Metamath Proof Explorer


Theorem finxpeq2

Description: Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020)

Ref Expression
Assertion finxpeq2 ( 𝑀 = 𝑁 → ( 𝑈 ↑↑ 𝑀 ) = ( 𝑈 ↑↑ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑀 = 𝑁 → ( 𝑀 ∈ ω ↔ 𝑁 ∈ ω ) )
2 opeq1 ( 𝑀 = 𝑁 → ⟨ 𝑀 , 𝑦 ⟩ = ⟨ 𝑁 , 𝑦 ⟩ )
3 rdgeq2 ( ⟨ 𝑀 , 𝑦 ⟩ = ⟨ 𝑁 , 𝑦 ⟩ → rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑀 , 𝑦 ⟩ ) = rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) )
4 2 3 syl ( 𝑀 = 𝑁 → rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑀 , 𝑦 ⟩ ) = rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) )
5 id ( 𝑀 = 𝑁𝑀 = 𝑁 )
6 4 5 fveq12d ( 𝑀 = 𝑁 → ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑀 , 𝑦 ⟩ ) ‘ 𝑀 ) = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) )
7 6 eqeq2d ( 𝑀 = 𝑁 → ( ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑀 , 𝑦 ⟩ ) ‘ 𝑀 ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) )
8 1 7 anbi12d ( 𝑀 = 𝑁 → ( ( 𝑀 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑀 , 𝑦 ⟩ ) ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) ) )
9 8 abbidv ( 𝑀 = 𝑁 → { 𝑦 ∣ ( 𝑀 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑀 , 𝑦 ⟩ ) ‘ 𝑀 ) ) } = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) } )
10 df-finxp ( 𝑈 ↑↑ 𝑀 ) = { 𝑦 ∣ ( 𝑀 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑀 , 𝑦 ⟩ ) ‘ 𝑀 ) ) }
11 df-finxp ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) }
12 9 10 11 3eqtr4g ( 𝑀 = 𝑁 → ( 𝑈 ↑↑ 𝑀 ) = ( 𝑈 ↑↑ 𝑁 ) )