| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( 𝑀  =  𝑁  →  ( 𝑀  ∈  ω  ↔  𝑁  ∈  ω ) ) | 
						
							| 2 |  | opeq1 | ⊢ ( 𝑀  =  𝑁  →  〈 𝑀 ,  𝑦 〉  =  〈 𝑁 ,  𝑦 〉 ) | 
						
							| 3 |  | rdgeq2 | ⊢ ( 〈 𝑀 ,  𝑦 〉  =  〈 𝑁 ,  𝑦 〉  →  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑀 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑀  =  𝑁  →  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑀 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑀  =  𝑁  →  𝑀  =  𝑁 ) | 
						
							| 6 | 4 5 | fveq12d | ⊢ ( 𝑀  =  𝑁  →  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑀 ,  𝑦 〉 ) ‘ 𝑀 )  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝑀  =  𝑁  →  ( ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑀 ,  𝑦 〉 ) ‘ 𝑀 )  ↔  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 8 | 1 7 | anbi12d | ⊢ ( 𝑀  =  𝑁  →  ( ( 𝑀  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑀 ,  𝑦 〉 ) ‘ 𝑀 ) )  ↔  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) ) | 
						
							| 9 | 8 | abbidv | ⊢ ( 𝑀  =  𝑁  →  { 𝑦  ∣  ( 𝑀  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑀 ,  𝑦 〉 ) ‘ 𝑀 ) ) }  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } ) | 
						
							| 10 |  | df-finxp | ⊢ ( 𝑈 ↑↑ 𝑀 )  =  { 𝑦  ∣  ( 𝑀  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑀 ,  𝑦 〉 ) ‘ 𝑀 ) ) } | 
						
							| 11 |  | df-finxp | ⊢ ( 𝑈 ↑↑ 𝑁 )  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 12 | 9 10 11 | 3eqtr4g | ⊢ ( 𝑀  =  𝑁  →  ( 𝑈 ↑↑ 𝑀 )  =  ( 𝑈 ↑↑ 𝑁 ) ) |