Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for ML
Cartesian exponentiation
finxpeq2
Next ⟩
csbfinxpg
Metamath Proof Explorer
Ascii
Unicode
Theorem
finxpeq2
Description:
Equality theorem for Cartesian exponentiation.
(Contributed by
ML
, 19-Oct-2020)
Ref
Expression
Assertion
finxpeq2
⊢
M
=
N
→
U
↑↑
M
=
U
↑↑
N
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
M
=
N
→
M
∈
ω
↔
N
∈
ω
2
opeq1
⊢
M
=
N
→
M
y
=
N
y
3
rdgeq2
⊢
M
y
=
N
y
→
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
M
y
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
4
2
3
syl
⊢
M
=
N
→
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
M
y
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
5
id
⊢
M
=
N
→
M
=
N
6
4
5
fveq12d
⊢
M
=
N
→
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
M
y
⁡
M
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
7
6
eqeq2d
⊢
M
=
N
→
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
M
y
⁡
M
↔
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
8
1
7
anbi12d
⊢
M
=
N
→
M
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
M
y
⁡
M
↔
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
9
8
abbidv
⊢
M
=
N
→
y
|
M
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
M
y
⁡
M
=
y
|
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
10
df-finxp
⊢
U
↑↑
M
=
y
|
M
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
M
y
⁡
M
11
df-finxp
⊢
U
↑↑
N
=
y
|
N
∈
ω
∧
∅
=
rec
⁡
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
⁡
x
n
x
N
y
⁡
N
12
9
10
11
3eqtr4g
⊢
M
=
N
→
U
↑↑
M
=
U
↑↑
N