| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-finxp | ⊢ ( 𝑈 ↑↑ 𝑁 )  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 2 | 1 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑈 ↑↑ 𝑁 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 3 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) )  ↔  ( [ 𝐴  /  𝑥 ] 𝑁  ∈  ω  ∧  [ 𝐴  /  𝑥 ] ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 4 |  | sbcel1g | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑁  ∈  ω  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝑁  ∈  ω ) ) | 
						
							| 5 |  | sbceq2g | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  ↔  ∅  =  ⦋ 𝐴  /  𝑥 ⦌ ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 6 |  | csbfv12 | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) | 
						
							| 7 |  | csbrdgg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 )  =  rec ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 8 |  | csbmpo123 | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) )  =  ( 𝑛  ∈  ⦋ 𝐴  /  𝑥 ⦌ ω ,  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ V  ↦  ⦋ 𝐴  /  𝑥 ⦌ if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ) | 
						
							| 9 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ω  =  ω ) | 
						
							| 10 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ V  =  V ) | 
						
							| 11 |  | csbif | ⊢ ⦋ 𝐴  /  𝑥 ⦌ if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) )  =  if ( [ 𝐴  /  𝑥 ] ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ⦋ 𝐴  /  𝑥 ⦌ ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) | 
						
							| 12 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑛  =  1o  ∧  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑈 ) ) | 
						
							| 13 |  | sbcg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑛  =  1o  ↔  𝑛  =  1o ) ) | 
						
							| 14 |  | sbcel12 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑈  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) | 
						
							| 15 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  =  𝑧 ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈  ↔  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ) | 
						
							| 17 | 14 16 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑈  ↔  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ) | 
						
							| 18 | 13 17 | anbi12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑛  =  1o  ∧  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑈 )  ↔  ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ) ) | 
						
							| 19 | 12 18 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 )  ↔  ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ) ) | 
						
							| 20 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ∅  =  ∅ ) | 
						
							| 21 |  | csbif | ⊢ ⦋ 𝐴  /  𝑥 ⦌ if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 )  =  if ( [ 𝐴  /  𝑥 ] 𝑧  ∈  ( V  ×  𝑈 ) ,  ⦋ 𝐴  /  𝑥 ⦌ 〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑛 ,  𝑧 〉 ) | 
						
							| 22 |  | sbcel12 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑧  ∈  ( V  ×  𝑈 )  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ ( V  ×  𝑈 ) ) | 
						
							| 23 |  | csbxp | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( V  ×  𝑈 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) | 
						
							| 24 | 10 | xpeq1d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 )  =  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ) | 
						
							| 25 | 23 24 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( V  ×  𝑈 )  =  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ) | 
						
							| 26 | 15 25 | eleq12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ ( V  ×  𝑈 )  ↔  𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ) ) | 
						
							| 27 | 22 26 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  ( V  ×  𝑈 )  ↔  𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ) ) | 
						
							| 28 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ) | 
						
							| 29 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑛 ,  𝑧 〉  =  〈 𝑛 ,  𝑧 〉 ) | 
						
							| 30 | 27 28 29 | ifbieq12d | ⊢ ( 𝐴  ∈  𝑉  →  if ( [ 𝐴  /  𝑥 ] 𝑧  ∈  ( V  ×  𝑈 ) ,  ⦋ 𝐴  /  𝑥 ⦌ 〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑛 ,  𝑧 〉 )  =  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) | 
						
							| 31 | 21 30 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 )  =  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) | 
						
							| 32 | 19 20 31 | ifbieq12d | ⊢ ( 𝐴  ∈  𝑉  →  if ( [ 𝐴  /  𝑥 ] ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ⦋ 𝐴  /  𝑥 ⦌ ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) )  =  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) | 
						
							| 33 | 11 32 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) )  =  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) | 
						
							| 34 | 9 10 33 | mpoeq123dv | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑛  ∈  ⦋ 𝐴  /  𝑥 ⦌ ω ,  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ V  ↦  ⦋ 𝐴  /  𝑥 ⦌ if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) )  =  ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ) | 
						
							| 35 | 8 34 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) )  =  ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ) | 
						
							| 36 |  | csbopg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑁 ,  𝑦 〉  =  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝑦 〉 ) | 
						
							| 37 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑦  =  𝑦 ) | 
						
							| 38 | 37 | opeq2d | ⊢ ( 𝐴  ∈  𝑉  →  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝑦 〉  =  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) | 
						
							| 39 | 36 38 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑁 ,  𝑦 〉  =  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) | 
						
							| 40 |  | rdgeq12 | ⊢ ( ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) )  =  ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) )  ∧  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑁 ,  𝑦 〉  =  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 )  →  rec ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑁 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ) | 
						
							| 41 | 35 39 40 | syl2anc | ⊢ ( 𝐴  ∈  𝑉  →  rec ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  ⦋ 𝐴  /  𝑥 ⦌ 〈 𝑁 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ) | 
						
							| 42 | 7 41 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ) | 
						
							| 43 | 42 | fveq1d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 )  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) | 
						
							| 44 | 6 43 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) | 
						
							| 45 | 44 | eqeq2d | ⊢ ( 𝐴  ∈  𝑉  →  ( ∅  =  ⦋ 𝐴  /  𝑥 ⦌ ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  ↔  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) ) | 
						
							| 46 | 5 45 | bitrd | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  ↔  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) ) | 
						
							| 47 | 4 46 | anbi12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑁  ∈  ω  ∧  [ 𝐴  /  𝑥 ] ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) )  ↔  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) ) ) | 
						
							| 48 | 3 47 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) )  ↔  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) ) ) | 
						
							| 49 | 48 | abbidv | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) }  =  { 𝑦  ∣  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) } ) | 
						
							| 50 |  | csbab | ⊢ ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) }  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 51 |  | df-finxp | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ↑↑ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 )  =  { 𝑦  ∣  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ,  𝑦 〉 ) ‘ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) } | 
						
							| 52 | 49 50 51 | 3eqtr4g | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑧  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑧  ∈  𝑈 ) ,  ∅ ,  if ( 𝑧  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 𝑛 ,  𝑧 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) }  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ↑↑ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) | 
						
							| 53 | 2 52 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑈 ↑↑ 𝑁 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑈 ↑↑ ⦋ 𝐴  /  𝑥 ⦌ 𝑁 ) ) |