Step |
Hyp |
Ref |
Expression |
1 |
|
df-finxp |
⊢ ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
2 |
1
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝑈 ↑↑ 𝑁 ) = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
3 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑁 ∈ ω ∧ [ 𝐴 / 𝑥 ] ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) |
4 |
|
sbcel1g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑁 ∈ ω ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ∈ ω ) ) |
5 |
|
sbceq2g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ↔ ∅ = ⦋ 𝐴 / 𝑥 ⦌ ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) |
6 |
|
csbfv12 |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) = ( ⦋ 𝐴 / 𝑥 ⦌ rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) |
7 |
|
csbrdgg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) = rec ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑁 , 𝑦 〉 ) ) |
8 |
|
csbmpo123 |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) = ( 𝑛 ∈ ⦋ 𝐴 / 𝑥 ⦌ ω , 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ V ↦ ⦋ 𝐴 / 𝑥 ⦌ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) ) |
9 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ω = ω ) |
10 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ V = V ) |
11 |
|
csbif |
⊢ ⦋ 𝐴 / 𝑥 ⦌ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) = if ( [ 𝐴 / 𝑥 ] ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ⦋ 𝐴 / 𝑥 ⦌ ∅ , ⦋ 𝐴 / 𝑥 ⦌ if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) |
12 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑛 = 1o ∧ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑈 ) ) |
13 |
|
sbcg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑛 = 1o ↔ 𝑛 = 1o ) ) |
14 |
|
sbcel12 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑈 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) |
15 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑧 = 𝑧 ) |
16 |
15
|
eleq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ↔ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) ) |
17 |
14 16
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) ) |
18 |
13 17
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑛 = 1o ∧ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑈 ) ↔ ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) ) ) |
19 |
12 18
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) ↔ ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) ) ) |
20 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ∅ = ∅ ) |
21 |
|
csbif |
⊢ ⦋ 𝐴 / 𝑥 ⦌ if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) = if ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ( V × 𝑈 ) , ⦋ 𝐴 / 𝑥 ⦌ 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑛 , 𝑧 〉 ) |
22 |
|
sbcel12 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ( V × 𝑈 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ ( V × 𝑈 ) ) |
23 |
|
csbxp |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( V × 𝑈 ) = ( ⦋ 𝐴 / 𝑥 ⦌ V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) |
24 |
10
|
xpeq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) = ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) ) |
25 |
23 24
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( V × 𝑈 ) = ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) ) |
26 |
15 25
|
eleq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ ( V × 𝑈 ) ↔ 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) ) ) |
27 |
22 26
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ( V × 𝑈 ) ↔ 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) ) ) |
28 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 = 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 ) |
29 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑛 , 𝑧 〉 = 〈 𝑛 , 𝑧 〉 ) |
30 |
27 28 29
|
ifbieq12d |
⊢ ( 𝐴 ∈ 𝑉 → if ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ( V × 𝑈 ) , ⦋ 𝐴 / 𝑥 ⦌ 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑛 , 𝑧 〉 ) = if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) |
31 |
21 30
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) = if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) |
32 |
19 20 31
|
ifbieq12d |
⊢ ( 𝐴 ∈ 𝑉 → if ( [ 𝐴 / 𝑥 ] ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ⦋ 𝐴 / 𝑥 ⦌ ∅ , ⦋ 𝐴 / 𝑥 ⦌ if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) = if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) |
33 |
11 32
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) = if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) |
34 |
9 10 33
|
mpoeq123dv |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑛 ∈ ⦋ 𝐴 / 𝑥 ⦌ ω , 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ V ↦ ⦋ 𝐴 / 𝑥 ⦌ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) = ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) ) |
35 |
8 34
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) = ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) ) |
36 |
|
csbopg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑁 , 𝑦 〉 = 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , ⦋ 𝐴 / 𝑥 ⦌ 𝑦 〉 ) |
37 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 ) |
38 |
37
|
opeq2d |
⊢ ( 𝐴 ∈ 𝑉 → 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , ⦋ 𝐴 / 𝑥 ⦌ 𝑦 〉 = 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) |
39 |
36 38
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑁 , 𝑦 〉 = 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) |
40 |
|
rdgeq12 |
⊢ ( ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) = ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) ∧ ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑁 , 𝑦 〉 = 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) → rec ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑁 , 𝑦 〉 ) = rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ) |
41 |
35 39 40
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → rec ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , ⦋ 𝐴 / 𝑥 ⦌ 〈 𝑁 , 𝑦 〉 ) = rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ) |
42 |
7 41
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) = rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ) |
43 |
42
|
fveq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) |
44 |
6 43
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) |
45 |
44
|
eqeq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ∅ = ⦋ 𝐴 / 𝑥 ⦌ ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) ) |
46 |
5 45
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) ) |
47 |
4 46
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑁 ∈ ω ∧ [ 𝐴 / 𝑥 ] ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ↔ ( ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) ) ) |
48 |
3 47
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ↔ ( ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) ) ) |
49 |
48
|
abbidv |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } = { 𝑦 ∣ ( ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) } ) |
50 |
|
csbab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
51 |
|
df-finxp |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ↑↑ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) = { 𝑦 ∣ ( ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝑁 , 𝑦 〉 ) ‘ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) } |
52 |
49 50 51
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑧 ∈ 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑧 ) 〉 , 〈 𝑛 , 𝑧 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } = ( ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ↑↑ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) |
53 |
2 52
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑈 ↑↑ 𝑁 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝑈 ↑↑ ⦋ 𝐴 / 𝑥 ⦌ 𝑁 ) ) |