Metamath Proof Explorer


Theorem csbfinxpg

Description: Distribute proper substitution through Cartesian exponentiation. (Contributed by ML, 25-Oct-2020)

Ref Expression
Assertion csbfinxpg ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑈 ↑↑ 𝑁 ) = ( 𝐴 / 𝑥 𝑈 ↑↑ 𝐴 / 𝑥 𝑁 ) )

Proof

Step Hyp Ref Expression
1 df-finxp ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) }
2 1 csbeq2i 𝐴 / 𝑥 ( 𝑈 ↑↑ 𝑁 ) = 𝐴 / 𝑥 { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) }
3 sbcan ( [ 𝐴 / 𝑥 ] ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑁 ∈ ω ∧ [ 𝐴 / 𝑥 ] ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) )
4 sbcel1g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑁 ∈ ω ↔ 𝐴 / 𝑥 𝑁 ∈ ω ) )
5 sbceq2g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ↔ ∅ = 𝐴 / 𝑥 ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) )
6 csbfv12 𝐴 / 𝑥 ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) = ( 𝐴 / 𝑥 rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 )
7 csbrdgg ( 𝐴𝑉 𝐴 / 𝑥 rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) = rec ( 𝐴 / 𝑥 ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) )
8 csbmpo123 ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) = ( 𝑛 𝐴 / 𝑥 ω , 𝑧 𝐴 / 𝑥 V ↦ 𝐴 / 𝑥 if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) )
9 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 ω = ω )
10 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 V = V )
11 csbif 𝐴 / 𝑥 if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) = if ( [ 𝐴 / 𝑥 ] ( 𝑛 = 1o𝑧𝑈 ) , 𝐴 / 𝑥 ∅ , 𝐴 / 𝑥 if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) )
12 sbcan ( [ 𝐴 / 𝑥 ] ( 𝑛 = 1o𝑧𝑈 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑛 = 1o[ 𝐴 / 𝑥 ] 𝑧𝑈 ) )
13 sbcg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑛 = 1o𝑛 = 1o ) )
14 sbcel12 ( [ 𝐴 / 𝑥 ] 𝑧𝑈 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 𝑈 )
15 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑧 = 𝑧 )
16 15 eleq1d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 𝑈𝑧 𝐴 / 𝑥 𝑈 ) )
17 14 16 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧𝑈𝑧 𝐴 / 𝑥 𝑈 ) )
18 13 17 anbi12d ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑛 = 1o[ 𝐴 / 𝑥 ] 𝑧𝑈 ) ↔ ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) ) )
19 12 18 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑛 = 1o𝑧𝑈 ) ↔ ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) ) )
20 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 ∅ = ∅ )
21 csbif 𝐴 / 𝑥 if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) = if ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ( V × 𝑈 ) , 𝐴 / 𝑥 𝑛 , ( 1st𝑧 ) ⟩ , 𝐴 / 𝑥 𝑛 , 𝑧 ⟩ )
22 sbcel12 ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ( V × 𝑈 ) ↔ 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 ( V × 𝑈 ) )
23 csbxp 𝐴 / 𝑥 ( V × 𝑈 ) = ( 𝐴 / 𝑥 V × 𝐴 / 𝑥 𝑈 )
24 10 xpeq1d ( 𝐴𝑉 → ( 𝐴 / 𝑥 V × 𝐴 / 𝑥 𝑈 ) = ( V × 𝐴 / 𝑥 𝑈 ) )
25 23 24 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 ( V × 𝑈 ) = ( V × 𝐴 / 𝑥 𝑈 ) )
26 15 25 eleq12d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 ( V × 𝑈 ) ↔ 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) ) )
27 22 26 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ( V × 𝑈 ) ↔ 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) ) )
28 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑛 , ( 1st𝑧 ) ⟩ = ⟨ 𝑛 , ( 1st𝑧 ) ⟩ )
29 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑛 , 𝑧 ⟩ = ⟨ 𝑛 , 𝑧 ⟩ )
30 27 28 29 ifbieq12d ( 𝐴𝑉 → if ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ( V × 𝑈 ) , 𝐴 / 𝑥 𝑛 , ( 1st𝑧 ) ⟩ , 𝐴 / 𝑥 𝑛 , 𝑧 ⟩ ) = if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) )
31 21 30 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) = if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) )
32 19 20 31 ifbieq12d ( 𝐴𝑉 → if ( [ 𝐴 / 𝑥 ] ( 𝑛 = 1o𝑧𝑈 ) , 𝐴 / 𝑥 ∅ , 𝐴 / 𝑥 if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) = if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) )
33 11 32 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) = if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) )
34 9 10 33 mpoeq123dv ( 𝐴𝑉 → ( 𝑛 𝐴 / 𝑥 ω , 𝑧 𝐴 / 𝑥 V ↦ 𝐴 / 𝑥 if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) = ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) )
35 8 34 eqtrd ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) = ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) )
36 csbopg ( 𝐴𝑉 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ = ⟨ 𝐴 / 𝑥 𝑁 , 𝐴 / 𝑥 𝑦 ⟩ )
37 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑦 = 𝑦 )
38 37 opeq2d ( 𝐴𝑉 → ⟨ 𝐴 / 𝑥 𝑁 , 𝐴 / 𝑥 𝑦 ⟩ = ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ )
39 36 38 eqtrd ( 𝐴𝑉 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ = ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ )
40 rdgeq12 ( ( 𝐴 / 𝑥 ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) = ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) ∧ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ = ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) → rec ( 𝐴 / 𝑥 ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) = rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) )
41 35 39 40 syl2anc ( 𝐴𝑉 → rec ( 𝐴 / 𝑥 ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) = rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) )
42 7 41 eqtrd ( 𝐴𝑉 𝐴 / 𝑥 rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) = rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) )
43 42 fveq1d ( 𝐴𝑉 → ( 𝐴 / 𝑥 rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) )
44 6 43 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) )
45 44 eqeq2d ( 𝐴𝑉 → ( ∅ = 𝐴 / 𝑥 ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) ) )
46 5 45 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) ) )
47 4 46 anbi12d ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑁 ∈ ω ∧ [ 𝐴 / 𝑥 ] ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) ↔ ( 𝐴 / 𝑥 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) ) ) )
48 3 47 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) ↔ ( 𝐴 / 𝑥 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) ) ) )
49 48 abbidv ( 𝐴𝑉 → { 𝑦[ 𝐴 / 𝑥 ] ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) } = { 𝑦 ∣ ( 𝐴 / 𝑥 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) ) } )
50 csbab 𝐴 / 𝑥 { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) } = { 𝑦[ 𝐴 / 𝑥 ] ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) }
51 df-finxp ( 𝐴 / 𝑥 𝑈 ↑↑ 𝐴 / 𝑥 𝑁 ) = { 𝑦 ∣ ( 𝐴 / 𝑥 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧 𝐴 / 𝑥 𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝐴 / 𝑥 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝐴 / 𝑥 𝑁 , 𝑦 ⟩ ) ‘ 𝐴 / 𝑥 𝑁 ) ) }
52 49 50 51 3eqtr4g ( 𝐴𝑉 𝐴 / 𝑥 { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑧 ∈ V ↦ if ( ( 𝑛 = 1o𝑧𝑈 ) , ∅ , if ( 𝑧 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑧 ) ⟩ , ⟨ 𝑛 , 𝑧 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) } = ( 𝐴 / 𝑥 𝑈 ↑↑ 𝐴 / 𝑥 𝑁 ) )
53 2 52 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑈 ↑↑ 𝑁 ) = ( 𝐴 / 𝑥 𝑈 ↑↑ 𝐴 / 𝑥 𝑁 ) )