Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( 𝑋 ∈ 𝑈 → ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ) |
2 |
|
eleq1a |
⊢ ( 𝑋 ∈ 𝑈 → ( 𝑥 = 𝑋 → 𝑥 ∈ 𝑈 ) ) |
3 |
2
|
anim2d |
⊢ ( 𝑋 ∈ 𝑈 → ( ( 𝑛 = 1o ∧ 𝑥 = 𝑋 ) → ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) ) ) |
4 |
|
iftrue |
⊢ ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = ∅ ) |
5 |
3 4
|
syl6 |
⊢ ( 𝑋 ∈ 𝑈 → ( ( 𝑛 = 1o ∧ 𝑥 = 𝑋 ) → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = ∅ ) ) |
6 |
5
|
imp |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ ( 𝑛 = 1o ∧ 𝑥 = 𝑋 ) ) → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = ∅ ) |
7 |
|
1onn |
⊢ 1o ∈ ω |
8 |
7
|
a1i |
⊢ ( 𝑋 ∈ 𝑈 → 1o ∈ ω ) |
9 |
|
elex |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ V ) |
10 |
|
0ex |
⊢ ∅ ∈ V |
11 |
10
|
a1i |
⊢ ( 𝑋 ∈ 𝑈 → ∅ ∈ V ) |
12 |
1 6 8 9 11
|
ovmpod |
⊢ ( 𝑋 ∈ 𝑈 → ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) 𝑋 ) = ∅ ) |
13 |
|
df-ov |
⊢ ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) 𝑋 ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑋 〉 ) |
14 |
12 13
|
eqtr3di |
⊢ ( 𝑋 ∈ 𝑈 → ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑋 〉 ) ) |