Metamath Proof Explorer


Theorem finxpreclem1

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion finxpreclem1 ( 𝑋𝑈 → ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) )

Proof

Step Hyp Ref Expression
1 df-ov ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) 𝑋 ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ )
2 eqidd ( 𝑋𝑈 → ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) )
3 eleq1a ( 𝑋𝑈 → ( 𝑥 = 𝑋𝑥𝑈 ) )
4 3 anim2d ( 𝑋𝑈 → ( ( 𝑛 = 1o𝑥 = 𝑋 ) → ( 𝑛 = 1o𝑥𝑈 ) ) )
5 iftrue ( ( 𝑛 = 1o𝑥𝑈 ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = ∅ )
6 4 5 syl6 ( 𝑋𝑈 → ( ( 𝑛 = 1o𝑥 = 𝑋 ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = ∅ ) )
7 6 imp ( ( 𝑋𝑈 ∧ ( 𝑛 = 1o𝑥 = 𝑋 ) ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = ∅ )
8 1onn 1o ∈ ω
9 8 a1i ( 𝑋𝑈 → 1o ∈ ω )
10 elex ( 𝑋𝑈𝑋 ∈ V )
11 0ex ∅ ∈ V
12 11 a1i ( 𝑋𝑈 → ∅ ∈ V )
13 2 7 9 10 12 ovmpod ( 𝑋𝑈 → ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) 𝑋 ) = ∅ )
14 1 13 syl5reqr ( 𝑋𝑈 → ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) )