| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd | ⊢ ( 𝑋  ∈  𝑈  →  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) )  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ) | 
						
							| 2 |  | eleq1a | ⊢ ( 𝑋  ∈  𝑈  →  ( 𝑥  =  𝑋  →  𝑥  ∈  𝑈 ) ) | 
						
							| 3 | 2 | anim2d | ⊢ ( 𝑋  ∈  𝑈  →  ( ( 𝑛  =  1o  ∧  𝑥  =  𝑋 )  →  ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ) ) | 
						
							| 4 |  | iftrue | ⊢ ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 )  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  ∅ ) | 
						
							| 5 | 3 4 | syl6 | ⊢ ( 𝑋  ∈  𝑈  →  ( ( 𝑛  =  1o  ∧  𝑥  =  𝑋 )  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  ∅ ) ) | 
						
							| 6 | 5 | imp | ⊢ ( ( 𝑋  ∈  𝑈  ∧  ( 𝑛  =  1o  ∧  𝑥  =  𝑋 ) )  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  ∅ ) | 
						
							| 7 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑋  ∈  𝑈  →  1o  ∈  ω ) | 
						
							| 9 |  | elex | ⊢ ( 𝑋  ∈  𝑈  →  𝑋  ∈  V ) | 
						
							| 10 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑋  ∈  𝑈  →  ∅  ∈  V ) | 
						
							| 12 | 1 6 8 9 11 | ovmpod | ⊢ ( 𝑋  ∈  𝑈  →  ( 1o ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) 𝑋 )  =  ∅ ) | 
						
							| 13 |  | df-ov | ⊢ ( 1o ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) 𝑋 )  =  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑋 〉 ) | 
						
							| 14 | 12 13 | eqtr3di | ⊢ ( 𝑋  ∈  𝑈  →  ∅  =  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑋 〉 ) ) |