Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
|- ( X e. U -> ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ) |
2 |
|
eleq1a |
|- ( X e. U -> ( x = X -> x e. U ) ) |
3 |
2
|
anim2d |
|- ( X e. U -> ( ( n = 1o /\ x = X ) -> ( n = 1o /\ x e. U ) ) ) |
4 |
|
iftrue |
|- ( ( n = 1o /\ x e. U ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = (/) ) |
5 |
3 4
|
syl6 |
|- ( X e. U -> ( ( n = 1o /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = (/) ) ) |
6 |
5
|
imp |
|- ( ( X e. U /\ ( n = 1o /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = (/) ) |
7 |
|
1onn |
|- 1o e. _om |
8 |
7
|
a1i |
|- ( X e. U -> 1o e. _om ) |
9 |
|
elex |
|- ( X e. U -> X e. _V ) |
10 |
|
0ex |
|- (/) e. _V |
11 |
10
|
a1i |
|- ( X e. U -> (/) e. _V ) |
12 |
1 6 8 9 11
|
ovmpod |
|- ( X e. U -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = (/) ) |
13 |
|
df-ov |
|- ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) |
14 |
12 13
|
eqtr3di |
|- ( X e. U -> (/) = ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) ) |