| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd |  |-  ( X e. U -> ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ) | 
						
							| 2 |  | eleq1a |  |-  ( X e. U -> ( x = X -> x e. U ) ) | 
						
							| 3 | 2 | anim2d |  |-  ( X e. U -> ( ( n = 1o /\ x = X ) -> ( n = 1o /\ x e. U ) ) ) | 
						
							| 4 |  | iftrue |  |-  ( ( n = 1o /\ x e. U ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = (/) ) | 
						
							| 5 | 3 4 | syl6 |  |-  ( X e. U -> ( ( n = 1o /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = (/) ) ) | 
						
							| 6 | 5 | imp |  |-  ( ( X e. U /\ ( n = 1o /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = (/) ) | 
						
							| 7 |  | 1onn |  |-  1o e. _om | 
						
							| 8 | 7 | a1i |  |-  ( X e. U -> 1o e. _om ) | 
						
							| 9 |  | elex |  |-  ( X e. U -> X e. _V ) | 
						
							| 10 |  | 0ex |  |-  (/) e. _V | 
						
							| 11 | 10 | a1i |  |-  ( X e. U -> (/) e. _V ) | 
						
							| 12 | 1 6 8 9 11 | ovmpod |  |-  ( X e. U -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = (/) ) | 
						
							| 13 |  | df-ov |  |-  ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) | 
						
							| 14 | 12 13 | eqtr3di |  |-  ( X e. U -> (/) = ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) ) |