| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  |-  F/ x ( X e. _V /\ -. X e. U ) | 
						
							| 2 |  | nfmpo2 |  |-  F/_ x ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 3 |  | nfcv |  |-  F/_ x <. 1o , X >. | 
						
							| 4 | 2 3 | nffv |  |-  F/_ x ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) | 
						
							| 5 |  | nfcv |  |-  F/_ x (/) | 
						
							| 6 | 4 5 | nfne |  |-  F/ x ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) | 
						
							| 7 | 1 6 | nfim |  |-  F/ x ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) | 
						
							| 8 |  | nfv |  |-  F/ n x = X | 
						
							| 9 |  | nfv |  |-  F/ n ( X e. _V /\ -. X e. U ) | 
						
							| 10 |  | nfmpo1 |  |-  F/_ n ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 11 |  | nfcv |  |-  F/_ n <. 1o , X >. | 
						
							| 12 | 10 11 | nffv |  |-  F/_ n ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) | 
						
							| 13 |  | nfcv |  |-  F/_ n (/) | 
						
							| 14 | 12 13 | nfne |  |-  F/ n ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) | 
						
							| 15 | 9 14 | nfim |  |-  F/ n ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) | 
						
							| 16 | 8 15 | nfim |  |-  F/ n ( x = X -> ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) ) | 
						
							| 17 |  | 1onn |  |-  1o e. _om | 
						
							| 18 | 17 | elexi |  |-  1o e. _V | 
						
							| 19 |  | df-ov |  |-  ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) | 
						
							| 20 |  | 0ex |  |-  (/) e. _V | 
						
							| 21 |  | opex |  |-  <. U. n , ( 1st ` x ) >. e. _V | 
						
							| 22 |  | opex |  |-  <. n , x >. e. _V | 
						
							| 23 | 21 22 | ifex |  |-  if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) e. _V | 
						
							| 24 | 20 23 | ifex |  |-  if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V | 
						
							| 25 | 24 | csbex |  |-  [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V | 
						
							| 26 | 25 | csbex |  |-  [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V | 
						
							| 27 |  | eqid |  |-  ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 28 | 27 | ovmpos |  |-  ( ( 1o e. _om /\ X e. _V /\ [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V ) -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 29 | 17 26 28 | mp3an13 |  |-  ( X e. _V -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( X e. _V /\ ( -. X e. U /\ ( n = 1o /\ x = X ) ) ) -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 31 |  | csbeq1a |  |-  ( x = X -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 32 |  | csbeq1a |  |-  ( n = 1o -> [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 33 | 31 32 | sylan9eqr |  |-  ( ( n = 1o /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( -. X e. U /\ ( n = 1o /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 35 |  | eleq1 |  |-  ( x = X -> ( x e. U <-> X e. U ) ) | 
						
							| 36 | 35 | notbid |  |-  ( x = X -> ( -. x e. U <-> -. X e. U ) ) | 
						
							| 37 | 36 | biimprcd |  |-  ( -. X e. U -> ( x = X -> -. x e. U ) ) | 
						
							| 38 |  | pm3.14 |  |-  ( ( -. n = 1o \/ -. x e. U ) -> -. ( n = 1o /\ x e. U ) ) | 
						
							| 39 | 38 | olcs |  |-  ( -. x e. U -> -. ( n = 1o /\ x e. U ) ) | 
						
							| 40 | 37 39 | syl6 |  |-  ( -. X e. U -> ( x = X -> -. ( n = 1o /\ x e. U ) ) ) | 
						
							| 41 |  | iffalse |  |-  ( -. ( n = 1o /\ x e. U ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) | 
						
							| 42 | 40 41 | syl6 |  |-  ( -. X e. U -> ( x = X -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 43 | 42 | imp |  |-  ( ( -. X e. U /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) | 
						
							| 44 |  | ifeqor |  |-  ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. U. n , ( 1st ` x ) >. \/ if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. ) | 
						
							| 45 |  | vuniex |  |-  U. n e. _V | 
						
							| 46 |  | fvex |  |-  ( 1st ` x ) e. _V | 
						
							| 47 | 45 46 | opnzi |  |-  <. U. n , ( 1st ` x ) >. =/= (/) | 
						
							| 48 | 47 | neii |  |-  -. <. U. n , ( 1st ` x ) >. = (/) | 
						
							| 49 |  | eqeq1 |  |-  ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. U. n , ( 1st ` x ) >. -> ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) <-> <. U. n , ( 1st ` x ) >. = (/) ) ) | 
						
							| 50 | 48 49 | mtbiri |  |-  ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. U. n , ( 1st ` x ) >. -> -. if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) ) | 
						
							| 51 |  | vex |  |-  n e. _V | 
						
							| 52 |  | vex |  |-  x e. _V | 
						
							| 53 | 51 52 | opnzi |  |-  <. n , x >. =/= (/) | 
						
							| 54 | 53 | neii |  |-  -. <. n , x >. = (/) | 
						
							| 55 |  | eqeq1 |  |-  ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. -> ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) <-> <. n , x >. = (/) ) ) | 
						
							| 56 | 54 55 | mtbiri |  |-  ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. -> -. if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) ) | 
						
							| 57 | 50 56 | jaoi |  |-  ( ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. U. n , ( 1st ` x ) >. \/ if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. ) -> -. if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) ) | 
						
							| 58 | 44 57 | mp1i |  |-  ( ( -. X e. U /\ x = X ) -> -. if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) ) | 
						
							| 59 | 58 | neqned |  |-  ( ( -. X e. U /\ x = X ) -> if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) =/= (/) ) | 
						
							| 60 | 43 59 | eqnetrd |  |-  ( ( -. X e. U /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) =/= (/) ) | 
						
							| 61 | 60 | adantrl |  |-  ( ( -. X e. U /\ ( n = 1o /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) =/= (/) ) | 
						
							| 62 | 34 61 | eqnetrrd |  |-  ( ( -. X e. U /\ ( n = 1o /\ x = X ) ) -> [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) =/= (/) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( X e. _V /\ ( -. X e. U /\ ( n = 1o /\ x = X ) ) ) -> [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) =/= (/) ) | 
						
							| 64 | 30 63 | eqnetrd |  |-  ( ( X e. _V /\ ( -. X e. U /\ ( n = 1o /\ x = X ) ) ) -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) =/= (/) ) | 
						
							| 65 | 19 64 | eqnetrrid |  |-  ( ( X e. _V /\ ( -. X e. U /\ ( n = 1o /\ x = X ) ) ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) | 
						
							| 66 | 65 | ancom2s |  |-  ( ( X e. _V /\ ( ( n = 1o /\ x = X ) /\ -. X e. U ) ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) | 
						
							| 67 | 66 | an12s |  |-  ( ( ( n = 1o /\ x = X ) /\ ( X e. _V /\ -. X e. U ) ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) | 
						
							| 68 | 67 | exp31 |  |-  ( n = 1o -> ( x = X -> ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) ) ) | 
						
							| 69 | 16 18 68 | vtoclef |  |-  ( x = X -> ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) ) | 
						
							| 70 | 7 69 | vtoclefex |  |-  ( X e. _V -> ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) ) | 
						
							| 71 | 70 | anabsi5 |  |-  ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) | 
						
							| 72 | 71 | necomd |  |-  ( ( X e. _V /\ -. X e. U ) -> (/) =/= ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) ) | 
						
							| 73 | 72 | neneqd |  |-  ( ( X e. _V /\ -. X e. U ) -> -. (/) = ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) ) |