Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
|- F/ x ( X e. _V /\ -. X e. U ) |
2 |
|
nfmpo2 |
|- F/_ x ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
3 |
|
nfcv |
|- F/_ x <. 1o , X >. |
4 |
2 3
|
nffv |
|- F/_ x ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) |
5 |
|
nfcv |
|- F/_ x (/) |
6 |
4 5
|
nfne |
|- F/ x ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) |
7 |
1 6
|
nfim |
|- F/ x ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) |
8 |
|
nfv |
|- F/ n x = X |
9 |
|
nfv |
|- F/ n ( X e. _V /\ -. X e. U ) |
10 |
|
nfmpo1 |
|- F/_ n ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
11 |
|
nfcv |
|- F/_ n <. 1o , X >. |
12 |
10 11
|
nffv |
|- F/_ n ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) |
13 |
|
nfcv |
|- F/_ n (/) |
14 |
12 13
|
nfne |
|- F/ n ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) |
15 |
9 14
|
nfim |
|- F/ n ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) |
16 |
8 15
|
nfim |
|- F/ n ( x = X -> ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) ) |
17 |
|
1onn |
|- 1o e. _om |
18 |
17
|
elexi |
|- 1o e. _V |
19 |
|
df-ov |
|- ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) |
20 |
|
0ex |
|- (/) e. _V |
21 |
|
opex |
|- <. U. n , ( 1st ` x ) >. e. _V |
22 |
|
opex |
|- <. n , x >. e. _V |
23 |
21 22
|
ifex |
|- if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) e. _V |
24 |
20 23
|
ifex |
|- if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V |
25 |
24
|
csbex |
|- [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V |
26 |
25
|
csbex |
|- [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V |
27 |
|
eqid |
|- ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
28 |
27
|
ovmpos |
|- ( ( 1o e. _om /\ X e. _V /\ [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V ) -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
29 |
17 26 28
|
mp3an13 |
|- ( X e. _V -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
30 |
29
|
adantr |
|- ( ( X e. _V /\ ( -. X e. U /\ ( n = 1o /\ x = X ) ) ) -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
31 |
|
csbeq1a |
|- ( x = X -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
32 |
|
csbeq1a |
|- ( n = 1o -> [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
33 |
31 32
|
sylan9eqr |
|- ( ( n = 1o /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
34 |
33
|
adantl |
|- ( ( -. X e. U /\ ( n = 1o /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
35 |
|
eleq1 |
|- ( x = X -> ( x e. U <-> X e. U ) ) |
36 |
35
|
notbid |
|- ( x = X -> ( -. x e. U <-> -. X e. U ) ) |
37 |
36
|
biimprcd |
|- ( -. X e. U -> ( x = X -> -. x e. U ) ) |
38 |
|
pm3.14 |
|- ( ( -. n = 1o \/ -. x e. U ) -> -. ( n = 1o /\ x e. U ) ) |
39 |
38
|
olcs |
|- ( -. x e. U -> -. ( n = 1o /\ x e. U ) ) |
40 |
37 39
|
syl6 |
|- ( -. X e. U -> ( x = X -> -. ( n = 1o /\ x e. U ) ) ) |
41 |
|
iffalse |
|- ( -. ( n = 1o /\ x e. U ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) |
42 |
40 41
|
syl6 |
|- ( -. X e. U -> ( x = X -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
43 |
42
|
imp |
|- ( ( -. X e. U /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) |
44 |
|
ifeqor |
|- ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. U. n , ( 1st ` x ) >. \/ if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. ) |
45 |
|
vuniex |
|- U. n e. _V |
46 |
|
fvex |
|- ( 1st ` x ) e. _V |
47 |
45 46
|
opnzi |
|- <. U. n , ( 1st ` x ) >. =/= (/) |
48 |
47
|
neii |
|- -. <. U. n , ( 1st ` x ) >. = (/) |
49 |
|
eqeq1 |
|- ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. U. n , ( 1st ` x ) >. -> ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) <-> <. U. n , ( 1st ` x ) >. = (/) ) ) |
50 |
48 49
|
mtbiri |
|- ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. U. n , ( 1st ` x ) >. -> -. if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) ) |
51 |
|
vex |
|- n e. _V |
52 |
|
vex |
|- x e. _V |
53 |
51 52
|
opnzi |
|- <. n , x >. =/= (/) |
54 |
53
|
neii |
|- -. <. n , x >. = (/) |
55 |
|
eqeq1 |
|- ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. -> ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) <-> <. n , x >. = (/) ) ) |
56 |
54 55
|
mtbiri |
|- ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. -> -. if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) ) |
57 |
50 56
|
jaoi |
|- ( ( if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. U. n , ( 1st ` x ) >. \/ if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. ) -> -. if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) ) |
58 |
44 57
|
mp1i |
|- ( ( -. X e. U /\ x = X ) -> -. if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = (/) ) |
59 |
58
|
neqned |
|- ( ( -. X e. U /\ x = X ) -> if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) =/= (/) ) |
60 |
43 59
|
eqnetrd |
|- ( ( -. X e. U /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) =/= (/) ) |
61 |
60
|
adantrl |
|- ( ( -. X e. U /\ ( n = 1o /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) =/= (/) ) |
62 |
34 61
|
eqnetrrd |
|- ( ( -. X e. U /\ ( n = 1o /\ x = X ) ) -> [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) =/= (/) ) |
63 |
62
|
adantl |
|- ( ( X e. _V /\ ( -. X e. U /\ ( n = 1o /\ x = X ) ) ) -> [_ 1o / n ]_ [_ X / x ]_ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) =/= (/) ) |
64 |
30 63
|
eqnetrd |
|- ( ( X e. _V /\ ( -. X e. U /\ ( n = 1o /\ x = X ) ) ) -> ( 1o ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) X ) =/= (/) ) |
65 |
19 64
|
eqnetrrid |
|- ( ( X e. _V /\ ( -. X e. U /\ ( n = 1o /\ x = X ) ) ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) |
66 |
65
|
ancom2s |
|- ( ( X e. _V /\ ( ( n = 1o /\ x = X ) /\ -. X e. U ) ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) |
67 |
66
|
an12s |
|- ( ( ( n = 1o /\ x = X ) /\ ( X e. _V /\ -. X e. U ) ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) |
68 |
67
|
exp31 |
|- ( n = 1o -> ( x = X -> ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) ) ) |
69 |
16 18 68
|
vtoclef |
|- ( x = X -> ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) ) |
70 |
7 69
|
vtoclefex |
|- ( X e. _V -> ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) ) |
71 |
70
|
anabsi5 |
|- ( ( X e. _V /\ -. X e. U ) -> ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) =/= (/) ) |
72 |
71
|
necomd |
|- ( ( X e. _V /\ -. X e. U ) -> (/) =/= ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) ) |
73 |
72
|
neneqd |
|- ( ( X e. _V /\ -. X e. U ) -> -. (/) = ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ` <. 1o , X >. ) ) |