| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | vex |  |-  y e. _V | 
						
							| 3 | 1 2 | opnzi |  |-  <. (/) , y >. =/= (/) | 
						
							| 4 | 3 | nesymi |  |-  -. (/) = <. (/) , y >. | 
						
							| 5 |  | peano1 |  |-  (/) e. _om | 
						
							| 6 |  | df-finxp |  |-  ( U ^^ (/) ) = { y | ( (/) e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. (/) , y >. ) ` (/) ) ) } | 
						
							| 7 | 6 | eqabri |  |-  ( y e. ( U ^^ (/) ) <-> ( (/) e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. (/) , y >. ) ` (/) ) ) ) | 
						
							| 8 | 5 7 | mpbiran |  |-  ( y e. ( U ^^ (/) ) <-> (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. (/) , y >. ) ` (/) ) ) | 
						
							| 9 |  | opex |  |-  <. (/) , y >. e. _V | 
						
							| 10 | 9 | rdg0 |  |-  ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. (/) , y >. ) ` (/) ) = <. (/) , y >. | 
						
							| 11 | 10 | eqeq2i |  |-  ( (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. (/) , y >. ) ` (/) ) <-> (/) = <. (/) , y >. ) | 
						
							| 12 | 8 11 | bitri |  |-  ( y e. ( U ^^ (/) ) <-> (/) = <. (/) , y >. ) | 
						
							| 13 | 4 12 | mtbir |  |-  -. y e. ( U ^^ (/) ) | 
						
							| 14 | 13 | nel0 |  |-  ( U ^^ (/) ) = (/) |