Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
1 2
|
opnzi |
⊢ 〈 ∅ , 𝑦 〉 ≠ ∅ |
4 |
3
|
nesymi |
⊢ ¬ ∅ = 〈 ∅ , 𝑦 〉 |
5 |
|
peano1 |
⊢ ∅ ∈ ω |
6 |
|
df-finxp |
⊢ ( 𝑈 ↑↑ ∅ ) = { 𝑦 ∣ ( ∅ ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 ∅ , 𝑦 〉 ) ‘ ∅ ) ) } |
7 |
6
|
abeq2i |
⊢ ( 𝑦 ∈ ( 𝑈 ↑↑ ∅ ) ↔ ( ∅ ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 ∅ , 𝑦 〉 ) ‘ ∅ ) ) ) |
8 |
5 7
|
mpbiran |
⊢ ( 𝑦 ∈ ( 𝑈 ↑↑ ∅ ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 ∅ , 𝑦 〉 ) ‘ ∅ ) ) |
9 |
|
opex |
⊢ 〈 ∅ , 𝑦 〉 ∈ V |
10 |
9
|
rdg0 |
⊢ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 ∅ , 𝑦 〉 ) ‘ ∅ ) = 〈 ∅ , 𝑦 〉 |
11 |
10
|
eqeq2i |
⊢ ( ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 ∅ , 𝑦 〉 ) ‘ ∅ ) ↔ ∅ = 〈 ∅ , 𝑦 〉 ) |
12 |
8 11
|
bitri |
⊢ ( 𝑦 ∈ ( 𝑈 ↑↑ ∅ ) ↔ ∅ = 〈 ∅ , 𝑦 〉 ) |
13 |
4 12
|
mtbir |
⊢ ¬ 𝑦 ∈ ( 𝑈 ↑↑ ∅ ) |
14 |
13
|
nel0 |
⊢ ( 𝑈 ↑↑ ∅ ) = ∅ |