Metamath Proof Explorer


Theorem finxp0

Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxp0 U↑↑=

Proof

Step Hyp Ref Expression
1 0ex V
2 vex yV
3 1 2 opnzi y
4 3 nesymi ¬=y
5 peano1 ω
6 df-finxp U↑↑=y|ω=recnω,xVifn=1𝑜xUifxV×Un1stxnxy
7 6 eqabri yU↑↑ω=recnω,xVifn=1𝑜xUifxV×Un1stxnxy
8 5 7 mpbiran yU↑↑=recnω,xVifn=1𝑜xUifxV×Un1stxnxy
9 opex yV
10 9 rdg0 recnω,xVifn=1𝑜xUifxV×Un1stxnxy=y
11 10 eqeq2i =recnω,xVifn=1𝑜xUifxV×Un1stxnxy=y
12 8 11 bitri yU↑↑=y
13 4 12 mtbir ¬yU↑↑
14 13 nel0 U↑↑=