Metamath Proof Explorer


Theorem finxp0

Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxp0 U ↑↑ =

Proof

Step Hyp Ref Expression
1 0ex V
2 vex y V
3 1 2 opnzi y
4 3 nesymi ¬ = y
5 peano1 ω
6 df-finxp U ↑↑ = y | ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x y
7 6 abeq2i y U ↑↑ ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x y
8 5 7 mpbiran y U ↑↑ = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x y
9 opex y V
10 9 rdg0 rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x y = y
11 10 eqeq2i = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x y = y
12 8 11 bitri y U ↑↑ = y
13 4 12 mtbir ¬ y U ↑↑
14 13 nel0 U ↑↑ =