| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑦  ∈  𝑈  →  1o  ∈  ω ) | 
						
							| 3 |  | finxpreclem1 | ⊢ ( 𝑦  ∈  𝑈  →  ∅  =  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑦 〉 ) ) | 
						
							| 4 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 5 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 6 |  | nnlim | ⊢ ( 1o  ∈  ω  →  ¬  Lim  1o ) | 
						
							| 7 | 1 6 | ax-mp | ⊢ ¬  Lim  1o | 
						
							| 8 |  | rdgsucuni | ⊢ ( ( 1o  ∈  On  ∧  1o  ≠  ∅  ∧  ¬  Lim  1o )  →  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o )  =  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ ∪  1o ) ) ) | 
						
							| 9 | 4 5 7 8 | mp3an | ⊢ ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o )  =  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ ∪  1o ) ) | 
						
							| 10 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 11 | 10 | unieqi | ⊢ ∪  1o  =  ∪  suc  ∅ | 
						
							| 12 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 13 | 12 | onunisuci | ⊢ ∪  suc  ∅  =  ∅ | 
						
							| 14 | 11 13 | eqtri | ⊢ ∪  1o  =  ∅ | 
						
							| 15 | 14 | fveq2i | ⊢ ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ ∪  1o )  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ ∅ ) | 
						
							| 16 |  | opex | ⊢ 〈 1o ,  𝑦 〉  ∈  V | 
						
							| 17 | 16 | rdg0 | ⊢ ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ ∅ )  =  〈 1o ,  𝑦 〉 | 
						
							| 18 | 15 17 | eqtri | ⊢ ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ ∪  1o )  =  〈 1o ,  𝑦 〉 | 
						
							| 19 | 18 | fveq2i | ⊢ ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ ∪  1o ) )  =  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑦 〉 ) | 
						
							| 20 | 9 19 | eqtri | ⊢ ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o )  =  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑦 〉 ) | 
						
							| 21 | 3 20 | eqtr4di | ⊢ ( 𝑦  ∈  𝑈  →  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o ) ) | 
						
							| 22 |  | df-finxp | ⊢ ( 𝑈 ↑↑ 1o )  =  { 𝑦  ∣  ( 1o  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o ) ) } | 
						
							| 23 | 22 | eqabri | ⊢ ( 𝑦  ∈  ( 𝑈 ↑↑ 1o )  ↔  ( 1o  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o ) ) ) | 
						
							| 24 | 2 21 23 | sylanbrc | ⊢ ( 𝑦  ∈  𝑈  →  𝑦  ∈  ( 𝑈 ↑↑ 1o ) ) | 
						
							| 25 | 1 23 | mpbiran | ⊢ ( 𝑦  ∈  ( 𝑈 ↑↑ 1o )  ↔  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o ) ) | 
						
							| 26 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 27 | 20 | eqcomi | ⊢ ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑦 〉 )  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o ) | 
						
							| 28 |  | finxpreclem2 | ⊢ ( ( 𝑦  ∈  V  ∧  ¬  𝑦  ∈  𝑈 )  →  ¬  ∅  =  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑦 〉 ) ) | 
						
							| 29 | 28 | neqned | ⊢ ( ( 𝑦  ∈  V  ∧  ¬  𝑦  ∈  𝑈 )  →  ∅  ≠  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑦 〉 ) ) | 
						
							| 30 | 29 | necomd | ⊢ ( ( 𝑦  ∈  V  ∧  ¬  𝑦  ∈  𝑈 )  →  ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ‘ 〈 1o ,  𝑦 〉 )  ≠  ∅ ) | 
						
							| 31 | 27 30 | eqnetrrid | ⊢ ( ( 𝑦  ∈  V  ∧  ¬  𝑦  ∈  𝑈 )  →  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o )  ≠  ∅ ) | 
						
							| 32 | 31 | necomd | ⊢ ( ( 𝑦  ∈  V  ∧  ¬  𝑦  ∈  𝑈 )  →  ∅  ≠  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o ) ) | 
						
							| 33 | 32 | neneqd | ⊢ ( ( 𝑦  ∈  V  ∧  ¬  𝑦  ∈  𝑈 )  →  ¬  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o ) ) | 
						
							| 34 | 26 33 | mpan | ⊢ ( ¬  𝑦  ∈  𝑈  →  ¬  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o ) ) | 
						
							| 35 | 34 | con4i | ⊢ ( ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 1o ,  𝑦 〉 ) ‘ 1o )  →  𝑦  ∈  𝑈 ) | 
						
							| 36 | 25 35 | sylbi | ⊢ ( 𝑦  ∈  ( 𝑈 ↑↑ 1o )  →  𝑦  ∈  𝑈 ) | 
						
							| 37 | 24 36 | impbii | ⊢ ( 𝑦  ∈  𝑈  ↔  𝑦  ∈  ( 𝑈 ↑↑ 1o ) ) | 
						
							| 38 | 37 | eqriv | ⊢ 𝑈  =  ( 𝑈 ↑↑ 1o ) | 
						
							| 39 | 38 | eqcomi | ⊢ ( 𝑈 ↑↑ 1o )  =  𝑈 |