Metamath Proof Explorer


Theorem finxp1o

Description: The value of Cartesian exponentiation at one. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion finxp1o ( 𝑈 ↑↑ 1o ) = 𝑈

Proof

Step Hyp Ref Expression
1 1onn 1o ∈ ω
2 1 a1i ( 𝑦𝑈 → 1o ∈ ω )
3 finxpreclem1 ( 𝑦𝑈 → ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑦 ⟩ ) )
4 1on 1o ∈ On
5 1n0 1o ≠ ∅
6 nnlim ( 1o ∈ ω → ¬ Lim 1o )
7 1 6 ax-mp ¬ Lim 1o
8 rdgsucuni ( ( 1o ∈ On ∧ 1o ≠ ∅ ∧ ¬ Lim 1o ) → ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) ) )
9 4 5 7 8 mp3an ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) )
10 df-1o 1o = suc ∅
11 10 unieqi 1o = suc ∅
12 0elon ∅ ∈ On
13 12 onunisuci suc ∅ = ∅
14 11 13 eqtri 1o = ∅
15 14 fveq2i ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ ∅ )
16 opex ⟨ 1o , 𝑦 ⟩ ∈ V
17 16 rdg0 ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ ∅ ) = ⟨ 1o , 𝑦
18 15 17 eqtri ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) = ⟨ 1o , 𝑦
19 18 fveq2i ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑦 ⟩ )
20 9 19 eqtri ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑦 ⟩ )
21 3 20 eqtr4di ( 𝑦𝑈 → ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) )
22 df-finxp ( 𝑈 ↑↑ 1o ) = { 𝑦 ∣ ( 1o ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) ) }
23 22 abeq2i ( 𝑦 ∈ ( 𝑈 ↑↑ 1o ) ↔ ( 1o ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) ) )
24 2 21 23 sylanbrc ( 𝑦𝑈𝑦 ∈ ( 𝑈 ↑↑ 1o ) )
25 1 23 mpbiran ( 𝑦 ∈ ( 𝑈 ↑↑ 1o ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) )
26 vex 𝑦 ∈ V
27 20 eqcomi ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑦 ⟩ ) = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o )
28 finxpreclem2 ( ( 𝑦 ∈ V ∧ ¬ 𝑦𝑈 ) → ¬ ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑦 ⟩ ) )
29 28 neqned ( ( 𝑦 ∈ V ∧ ¬ 𝑦𝑈 ) → ∅ ≠ ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑦 ⟩ ) )
30 29 necomd ( ( 𝑦 ∈ V ∧ ¬ 𝑦𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑦 ⟩ ) ≠ ∅ )
31 27 30 eqnetrrid ( ( 𝑦 ∈ V ∧ ¬ 𝑦𝑈 ) → ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) ≠ ∅ )
32 31 necomd ( ( 𝑦 ∈ V ∧ ¬ 𝑦𝑈 ) → ∅ ≠ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) )
33 32 neneqd ( ( 𝑦 ∈ V ∧ ¬ 𝑦𝑈 ) → ¬ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) )
34 26 33 mpan ( ¬ 𝑦𝑈 → ¬ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) )
35 34 con4i ( ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 1o , 𝑦 ⟩ ) ‘ 1o ) → 𝑦𝑈 )
36 25 35 sylbi ( 𝑦 ∈ ( 𝑈 ↑↑ 1o ) → 𝑦𝑈 )
37 24 36 impbii ( 𝑦𝑈𝑦 ∈ ( 𝑈 ↑↑ 1o ) )
38 37 eqriv 𝑈 = ( 𝑈 ↑↑ 1o )
39 38 eqcomi ( 𝑈 ↑↑ 1o ) = 𝑈