Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
⊢ 1o ∈ ω |
2 |
1
|
a1i |
⊢ ( 𝑦 ∈ 𝑈 → 1o ∈ ω ) |
3 |
|
finxpreclem1 |
⊢ ( 𝑦 ∈ 𝑈 → ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑦 〉 ) ) |
4 |
|
1on |
⊢ 1o ∈ On |
5 |
|
1n0 |
⊢ 1o ≠ ∅ |
6 |
|
nnlim |
⊢ ( 1o ∈ ω → ¬ Lim 1o ) |
7 |
1 6
|
ax-mp |
⊢ ¬ Lim 1o |
8 |
|
rdgsucuni |
⊢ ( ( 1o ∈ On ∧ 1o ≠ ∅ ∧ ¬ Lim 1o ) → ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ ∪ 1o ) ) ) |
9 |
4 5 7 8
|
mp3an |
⊢ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ ∪ 1o ) ) |
10 |
|
df-1o |
⊢ 1o = suc ∅ |
11 |
10
|
unieqi |
⊢ ∪ 1o = ∪ suc ∅ |
12 |
|
0elon |
⊢ ∅ ∈ On |
13 |
12
|
onunisuci |
⊢ ∪ suc ∅ = ∅ |
14 |
11 13
|
eqtri |
⊢ ∪ 1o = ∅ |
15 |
14
|
fveq2i |
⊢ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ ∪ 1o ) = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ ∅ ) |
16 |
|
opex |
⊢ 〈 1o , 𝑦 〉 ∈ V |
17 |
16
|
rdg0 |
⊢ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ ∅ ) = 〈 1o , 𝑦 〉 |
18 |
15 17
|
eqtri |
⊢ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ ∪ 1o ) = 〈 1o , 𝑦 〉 |
19 |
18
|
fveq2i |
⊢ ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ ∪ 1o ) ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑦 〉 ) |
20 |
9 19
|
eqtri |
⊢ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑦 〉 ) |
21 |
3 20
|
eqtr4di |
⊢ ( 𝑦 ∈ 𝑈 → ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) ) |
22 |
|
df-finxp |
⊢ ( 𝑈 ↑↑ 1o ) = { 𝑦 ∣ ( 1o ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) ) } |
23 |
22
|
abeq2i |
⊢ ( 𝑦 ∈ ( 𝑈 ↑↑ 1o ) ↔ ( 1o ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) ) ) |
24 |
2 21 23
|
sylanbrc |
⊢ ( 𝑦 ∈ 𝑈 → 𝑦 ∈ ( 𝑈 ↑↑ 1o ) ) |
25 |
1 23
|
mpbiran |
⊢ ( 𝑦 ∈ ( 𝑈 ↑↑ 1o ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) ) |
26 |
|
vex |
⊢ 𝑦 ∈ V |
27 |
20
|
eqcomi |
⊢ ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑦 〉 ) = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) |
28 |
|
finxpreclem2 |
⊢ ( ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈 ) → ¬ ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑦 〉 ) ) |
29 |
28
|
neqned |
⊢ ( ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈 ) → ∅ ≠ ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑦 〉 ) ) |
30 |
29
|
necomd |
⊢ ( ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ‘ 〈 1o , 𝑦 〉 ) ≠ ∅ ) |
31 |
27 30
|
eqnetrrid |
⊢ ( ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈 ) → ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) ≠ ∅ ) |
32 |
31
|
necomd |
⊢ ( ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈 ) → ∅ ≠ ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) ) |
33 |
32
|
neneqd |
⊢ ( ( 𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈 ) → ¬ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) ) |
34 |
26 33
|
mpan |
⊢ ( ¬ 𝑦 ∈ 𝑈 → ¬ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) ) |
35 |
34
|
con4i |
⊢ ( ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 1o , 𝑦 〉 ) ‘ 1o ) → 𝑦 ∈ 𝑈 ) |
36 |
25 35
|
sylbi |
⊢ ( 𝑦 ∈ ( 𝑈 ↑↑ 1o ) → 𝑦 ∈ 𝑈 ) |
37 |
24 36
|
impbii |
⊢ ( 𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ( 𝑈 ↑↑ 1o ) ) |
38 |
37
|
eqriv |
⊢ 𝑈 = ( 𝑈 ↑↑ 1o ) |
39 |
38
|
eqcomi |
⊢ ( 𝑈 ↑↑ 1o ) = 𝑈 |