Metamath Proof Explorer


Theorem rdgsucuni

Description: If an ordinal number has a predecessor, the value of the recursive definition generator at that number in terms of its predecessor. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion rdgsucuni ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 onsucuni3 ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → 𝐵 = suc 𝐵 )
2 1 fveq2d ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) = ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝐵 ) )
3 onuni ( 𝐵 ∈ On → 𝐵 ∈ On )
4 3 3ad2ant1 ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → 𝐵 ∈ On )
5 rdgsuc ( 𝐵 ∈ On → ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) ) )
6 4 5 syl ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) ) )
7 2 6 eqtrd ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) ) )