Step |
Hyp |
Ref |
Expression |
1 |
|
onsucuni3 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → 𝐵 = suc ∪ 𝐵 ) |
2 |
1
|
fveq2d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) = ( rec ( 𝐹 , 𝐼 ) ‘ suc ∪ 𝐵 ) ) |
3 |
|
onuni |
⊢ ( 𝐵 ∈ On → ∪ 𝐵 ∈ On ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ∪ 𝐵 ∈ On ) |
5 |
|
rdgsuc |
⊢ ( ∪ 𝐵 ∈ On → ( rec ( 𝐹 , 𝐼 ) ‘ suc ∪ 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ ∪ 𝐵 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐼 ) ‘ suc ∪ 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ ∪ 𝐵 ) ) ) |
7 |
2 6
|
eqtrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐼 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ ∪ 𝐵 ) ) ) |