Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) → 𝑋 ∈ ω ) |
2 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ω ↔ 𝑋 ∈ ω ) ) |
3 |
2
|
3anbi3d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑁 +o 𝑥 ) = ( 𝑁 +o 𝑋 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑀 +o 𝑥 ) = ( 𝑀 +o 𝑋 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) |
8 |
5 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) ) |
10 |
3 9
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) ) ) |
11 |
|
peano1 |
⊢ ∅ ∈ ω |
12 |
|
oa0 |
⊢ ( 𝑁 ∈ On → ( 𝑁 +o ∅ ) = 𝑁 ) |
13 |
12
|
fveq2d |
⊢ ( 𝑁 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) ) |
14 |
13
|
eqcomd |
⊢ ( 𝑁 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) ) |
15 |
|
oa0 |
⊢ ( 𝑀 ∈ On → ( 𝑀 +o ∅ ) = 𝑀 ) |
16 |
15
|
fveq2d |
⊢ ( 𝑀 ∈ On → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) ) |
17 |
16
|
eqcomd |
⊢ ( 𝑀 ∈ On → ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) |
18 |
14 17
|
eqeqan12d |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) |
19 |
18
|
biimpd |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) |
20 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ ω ↔ ∅ ∈ ω ) ) |
21 |
20
|
3anbi3d |
⊢ ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω ) ) ) |
22 |
11
|
biantru |
⊢ ( 𝑀 ∈ On ↔ ( 𝑀 ∈ On ∧ ∅ ∈ ω ) ) |
23 |
22
|
anbi2i |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) ↔ ( 𝑁 ∈ On ∧ ( 𝑀 ∈ On ∧ ∅ ∈ ω ) ) ) |
24 |
|
3anass |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω ) ↔ ( 𝑁 ∈ On ∧ ( 𝑀 ∈ On ∧ ∅ ∈ ω ) ) ) |
25 |
23 24
|
bitr4i |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω ) ) |
26 |
21 25
|
bitr4di |
⊢ ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) ) ) |
27 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑁 +o 𝑥 ) = ( 𝑁 +o ∅ ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑀 +o 𝑥 ) = ( 𝑀 +o ∅ ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) |
31 |
28 30
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) ) |
33 |
26 32
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) ) ) |
34 |
19 33
|
mpbiri |
⊢ ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
35 |
34
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
36 |
|
sbc6g |
⊢ ( ∅ ∈ ω → ( [ ∅ / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ∀ 𝑥 ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) ) ) |
37 |
35 36
|
mpbiri |
⊢ ( ∅ ∈ ω → [ ∅ / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
38 |
11 37
|
ax-mp |
⊢ [ ∅ / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
39 |
|
peano2b |
⊢ ( 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) |
40 |
39
|
3anbi3i |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) ) |
41 |
40
|
imbi1i |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
42 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
43 |
|
oacl |
⊢ ( ( 𝑁 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑁 +o 𝑥 ) ∈ On ) |
44 |
|
oacl |
⊢ ( ( 𝑀 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑀 +o 𝑥 ) ∈ On ) |
45 |
43 44
|
anim12i |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝑀 ∈ On ∧ 𝑥 ∈ On ) ) → ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) |
46 |
45
|
3impdir |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) |
47 |
|
rdgsuc |
⊢ ( ( 𝑁 +o 𝑥 ) ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) ) ) |
48 |
|
fveq2 |
⊢ ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) → ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
49 |
47 48
|
sylan9eqr |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( 𝑁 +o 𝑥 ) ∈ On ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
50 |
49
|
adantrr |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
51 |
|
rdgsuc |
⊢ ( ( 𝑀 +o 𝑥 ) ∈ On → ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
52 |
51
|
ad2antll |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) → ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
53 |
50 52
|
eqtr4d |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
54 |
46 53
|
sylan2 |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
55 |
54
|
ancoms |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
56 |
42 55
|
syl3anl3 |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
57 |
|
onasuc |
⊢ ( ( 𝑁 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝑁 +o suc 𝑥 ) = suc ( 𝑁 +o 𝑥 ) ) |
58 |
57
|
fveq2d |
⊢ ( ( 𝑁 ∈ On ∧ 𝑥 ∈ ω ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) ) |
59 |
58
|
3adant2 |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) ) |
61 |
|
onasuc |
⊢ ( ( 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝑀 +o suc 𝑥 ) = suc ( 𝑀 +o 𝑥 ) ) |
62 |
61
|
fveq2d |
⊢ ( ( 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
63 |
62
|
3adant1 |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
65 |
56 60 64
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) |
66 |
65
|
ex |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) |
67 |
66
|
imim2d |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
68 |
40 67
|
sylbir |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
69 |
68
|
a2i |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
70 |
41 69
|
sylbi |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
71 |
|
sbcimg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( [ suc 𝑥 / 𝑥 ] ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → [ suc 𝑥 / 𝑥 ] ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) ) |
72 |
|
sbc3an |
⊢ ( [ suc 𝑥 / 𝑥 ] ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( [ suc 𝑥 / 𝑥 ] 𝑁 ∈ On ∧ [ suc 𝑥 / 𝑥 ] 𝑀 ∈ On ∧ [ suc 𝑥 / 𝑥 ] 𝑥 ∈ ω ) ) |
73 |
|
sbcg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] 𝑁 ∈ On ↔ 𝑁 ∈ On ) ) |
74 |
|
sbcg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] 𝑀 ∈ On ↔ 𝑀 ∈ On ) ) |
75 |
|
sbcel1v |
⊢ ( [ suc 𝑥 / 𝑥 ] 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) |
76 |
75
|
a1i |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) ) |
77 |
73 74 76
|
3anbi123d |
⊢ ( suc 𝑥 ∈ ω → ( ( [ suc 𝑥 / 𝑥 ] 𝑁 ∈ On ∧ [ suc 𝑥 / 𝑥 ] 𝑀 ∈ On ∧ [ suc 𝑥 / 𝑥 ] 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) ) ) |
78 |
72 77
|
syl5bb |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) ) ) |
79 |
|
sbcimg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
80 |
|
sbcg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) ) ) |
81 |
|
sbceqg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
82 |
|
csbfv12 |
⊢ ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐴 ) ‘ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑁 +o 𝑥 ) ) |
83 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐴 ) = rec ( 𝐹 , 𝐴 ) ) |
84 |
|
csbov123 |
⊢ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑁 +o 𝑥 ) = ( ⦋ suc 𝑥 / 𝑥 ⦌ 𝑁 ⦋ suc 𝑥 / 𝑥 ⦌ +o ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 ) |
85 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ +o = +o ) |
86 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ 𝑁 = 𝑁 ) |
87 |
|
csbvarg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 = suc 𝑥 ) |
88 |
85 86 87
|
oveq123d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ 𝑁 ⦋ suc 𝑥 / 𝑥 ⦌ +o ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 ) = ( 𝑁 +o suc 𝑥 ) ) |
89 |
84 88
|
syl5eq |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑁 +o 𝑥 ) = ( 𝑁 +o suc 𝑥 ) ) |
90 |
83 89
|
fveq12d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐴 ) ‘ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) ) |
91 |
82 90
|
syl5eq |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) ) |
92 |
|
csbfv12 |
⊢ ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) = ( ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐵 ) ‘ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑀 +o 𝑥 ) ) |
93 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐵 ) = rec ( 𝐹 , 𝐵 ) ) |
94 |
|
csbov123 |
⊢ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑀 +o 𝑥 ) = ( ⦋ suc 𝑥 / 𝑥 ⦌ 𝑀 ⦋ suc 𝑥 / 𝑥 ⦌ +o ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 ) |
95 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ 𝑀 = 𝑀 ) |
96 |
85 95 87
|
oveq123d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ 𝑀 ⦋ suc 𝑥 / 𝑥 ⦌ +o ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 ) = ( 𝑀 +o suc 𝑥 ) ) |
97 |
94 96
|
syl5eq |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑀 +o 𝑥 ) = ( 𝑀 +o suc 𝑥 ) ) |
98 |
93 97
|
fveq12d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐵 ) ‘ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑀 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) |
99 |
92 98
|
syl5eq |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) |
100 |
91 99
|
eqeq12d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) |
101 |
81 100
|
bitrd |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) |
102 |
80 101
|
imbi12d |
⊢ ( suc 𝑥 ∈ ω → ( ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
103 |
79 102
|
bitrd |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
104 |
78 103
|
imbi12d |
⊢ ( suc 𝑥 ∈ ω → ( ( [ suc 𝑥 / 𝑥 ] ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → [ suc 𝑥 / 𝑥 ] ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) ) |
105 |
71 104
|
bitrd |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) ) |
106 |
70 105
|
syl5ibr |
⊢ ( suc 𝑥 ∈ ω → ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) → [ suc 𝑥 / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) ) |
107 |
39 106
|
sylbi |
⊢ ( 𝑥 ∈ ω → ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) → [ suc 𝑥 / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) ) |
108 |
38 107
|
findes |
⊢ ( 𝑥 ∈ ω → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
109 |
10 108
|
vtoclga |
⊢ ( 𝑋 ∈ ω → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) ) |
110 |
1 109
|
mpcom |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) |