| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) → 𝑋 ∈ ω ) |
| 2 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ω ↔ 𝑋 ∈ ω ) ) |
| 3 |
2
|
3anbi3d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑁 +o 𝑥 ) = ( 𝑁 +o 𝑋 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑀 +o 𝑥 ) = ( 𝑀 +o 𝑋 ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) |
| 8 |
5 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) ) |
| 10 |
3 9
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) ) ) |
| 11 |
|
peano1 |
⊢ ∅ ∈ ω |
| 12 |
|
oa0 |
⊢ ( 𝑁 ∈ On → ( 𝑁 +o ∅ ) = 𝑁 ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑁 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) ) |
| 14 |
13
|
eqcomd |
⊢ ( 𝑁 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) ) |
| 15 |
|
oa0 |
⊢ ( 𝑀 ∈ On → ( 𝑀 +o ∅ ) = 𝑀 ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝑀 ∈ On → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) ) |
| 17 |
16
|
eqcomd |
⊢ ( 𝑀 ∈ On → ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) |
| 18 |
14 17
|
eqeqan12d |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) |
| 19 |
18
|
biimpd |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) |
| 20 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ ω ↔ ∅ ∈ ω ) ) |
| 21 |
20
|
3anbi3d |
⊢ ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω ) ) ) |
| 22 |
11
|
biantru |
⊢ ( 𝑀 ∈ On ↔ ( 𝑀 ∈ On ∧ ∅ ∈ ω ) ) |
| 23 |
22
|
anbi2i |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) ↔ ( 𝑁 ∈ On ∧ ( 𝑀 ∈ On ∧ ∅ ∈ ω ) ) ) |
| 24 |
|
3anass |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω ) ↔ ( 𝑁 ∈ On ∧ ( 𝑀 ∈ On ∧ ∅ ∈ ω ) ) ) |
| 25 |
23 24
|
bitr4i |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω ) ) |
| 26 |
21 25
|
bitr4di |
⊢ ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑁 +o 𝑥 ) = ( 𝑁 +o ∅ ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑀 +o 𝑥 ) = ( 𝑀 +o ∅ ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) |
| 31 |
28 30
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) ) |
| 33 |
26 32
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o ∅ ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o ∅ ) ) ) ) ) ) |
| 34 |
19 33
|
mpbiri |
⊢ ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
| 35 |
34
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
| 36 |
|
sbc6g |
⊢ ( ∅ ∈ ω → ( [ ∅ / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ∀ 𝑥 ( 𝑥 = ∅ → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) ) ) |
| 37 |
35 36
|
mpbiri |
⊢ ( ∅ ∈ ω → [ ∅ / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
| 38 |
11 37
|
ax-mp |
⊢ [ ∅ / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
| 39 |
|
peano2b |
⊢ ( 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) |
| 40 |
39
|
3anbi3i |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) ) |
| 41 |
40
|
imbi1i |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
| 42 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
| 43 |
|
oacl |
⊢ ( ( 𝑁 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑁 +o 𝑥 ) ∈ On ) |
| 44 |
|
oacl |
⊢ ( ( 𝑀 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑀 +o 𝑥 ) ∈ On ) |
| 45 |
43 44
|
anim12i |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑥 ∈ On ) ∧ ( 𝑀 ∈ On ∧ 𝑥 ∈ On ) ) → ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) |
| 46 |
45
|
3impdir |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) |
| 47 |
|
rdgsuc |
⊢ ( ( 𝑁 +o 𝑥 ) ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) ) ) |
| 48 |
|
fveq2 |
⊢ ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) → ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
| 49 |
47 48
|
sylan9eqr |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( 𝑁 +o 𝑥 ) ∈ On ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
| 50 |
49
|
adantrr |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
| 51 |
|
rdgsuc |
⊢ ( ( 𝑀 +o 𝑥 ) ∈ On → ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
| 52 |
51
|
ad2antll |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) → ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
| 53 |
50 52
|
eqtr4d |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( ( 𝑁 +o 𝑥 ) ∈ On ∧ ( 𝑀 +o 𝑥 ) ∈ On ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
| 54 |
46 53
|
sylan2 |
⊢ ( ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ∧ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
| 55 |
54
|
ancoms |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
| 56 |
42 55
|
syl3anl3 |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
| 57 |
|
onasuc |
⊢ ( ( 𝑁 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝑁 +o suc 𝑥 ) = suc ( 𝑁 +o 𝑥 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( ( 𝑁 ∈ On ∧ 𝑥 ∈ ω ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) ) |
| 59 |
58
|
3adant2 |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ suc ( 𝑁 +o 𝑥 ) ) ) |
| 61 |
|
onasuc |
⊢ ( ( 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝑀 +o suc 𝑥 ) = suc ( 𝑀 +o 𝑥 ) ) |
| 62 |
61
|
fveq2d |
⊢ ( ( 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
| 63 |
62
|
3adant1 |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ suc ( 𝑀 +o 𝑥 ) ) ) |
| 65 |
56 60 64
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ∧ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) |
| 66 |
65
|
ex |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) |
| 67 |
66
|
imim2d |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
| 68 |
40 67
|
sylbir |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
| 69 |
68
|
a2i |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
| 70 |
41 69
|
sylbi |
⊢ ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
| 71 |
|
sbcimg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( [ suc 𝑥 / 𝑥 ] ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → [ suc 𝑥 / 𝑥 ] ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) ) |
| 72 |
|
sbc3an |
⊢ ( [ suc 𝑥 / 𝑥 ] ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( [ suc 𝑥 / 𝑥 ] 𝑁 ∈ On ∧ [ suc 𝑥 / 𝑥 ] 𝑀 ∈ On ∧ [ suc 𝑥 / 𝑥 ] 𝑥 ∈ ω ) ) |
| 73 |
|
sbcg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] 𝑁 ∈ On ↔ 𝑁 ∈ On ) ) |
| 74 |
|
sbcg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] 𝑀 ∈ On ↔ 𝑀 ∈ On ) ) |
| 75 |
|
sbcel1v |
⊢ ( [ suc 𝑥 / 𝑥 ] 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) |
| 76 |
75
|
a1i |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) ) |
| 77 |
73 74 76
|
3anbi123d |
⊢ ( suc 𝑥 ∈ ω → ( ( [ suc 𝑥 / 𝑥 ] 𝑁 ∈ On ∧ [ suc 𝑥 / 𝑥 ] 𝑀 ∈ On ∧ [ suc 𝑥 / 𝑥 ] 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) ) ) |
| 78 |
72 77
|
bitrid |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) ↔ ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) ) ) |
| 79 |
|
sbcimg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
| 80 |
|
sbcg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) ) ) |
| 81 |
|
sbceqg |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) |
| 82 |
|
csbfv12 |
⊢ ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐴 ) ‘ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑁 +o 𝑥 ) ) |
| 83 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐴 ) = rec ( 𝐹 , 𝐴 ) ) |
| 84 |
|
csbov123 |
⊢ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑁 +o 𝑥 ) = ( ⦋ suc 𝑥 / 𝑥 ⦌ 𝑁 ⦋ suc 𝑥 / 𝑥 ⦌ +o ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 ) |
| 85 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ +o = +o ) |
| 86 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ 𝑁 = 𝑁 ) |
| 87 |
|
csbvarg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 = suc 𝑥 ) |
| 88 |
85 86 87
|
oveq123d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ 𝑁 ⦋ suc 𝑥 / 𝑥 ⦌ +o ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 ) = ( 𝑁 +o suc 𝑥 ) ) |
| 89 |
84 88
|
eqtrid |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑁 +o 𝑥 ) = ( 𝑁 +o suc 𝑥 ) ) |
| 90 |
83 89
|
fveq12d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐴 ) ‘ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) ) |
| 91 |
82 90
|
eqtrid |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) ) |
| 92 |
|
csbfv12 |
⊢ ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) = ( ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐵 ) ‘ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑀 +o 𝑥 ) ) |
| 93 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐵 ) = rec ( 𝐹 , 𝐵 ) ) |
| 94 |
|
csbov123 |
⊢ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑀 +o 𝑥 ) = ( ⦋ suc 𝑥 / 𝑥 ⦌ 𝑀 ⦋ suc 𝑥 / 𝑥 ⦌ +o ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 ) |
| 95 |
|
csbconstg |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ 𝑀 = 𝑀 ) |
| 96 |
85 95 87
|
oveq123d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ 𝑀 ⦋ suc 𝑥 / 𝑥 ⦌ +o ⦋ suc 𝑥 / 𝑥 ⦌ 𝑥 ) = ( 𝑀 +o suc 𝑥 ) ) |
| 97 |
94 96
|
eqtrid |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑀 +o 𝑥 ) = ( 𝑀 +o suc 𝑥 ) ) |
| 98 |
93 97
|
fveq12d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ rec ( 𝐹 , 𝐵 ) ‘ ⦋ suc 𝑥 / 𝑥 ⦌ ( 𝑀 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) |
| 99 |
92 98
|
eqtrid |
⊢ ( suc 𝑥 ∈ ω → ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) |
| 100 |
91 99
|
eqeq12d |
⊢ ( suc 𝑥 ∈ ω → ( ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ⦋ suc 𝑥 / 𝑥 ⦌ ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) |
| 101 |
81 100
|
bitrd |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) |
| 102 |
80 101
|
imbi12d |
⊢ ( suc 𝑥 ∈ ω → ( ( [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → [ suc 𝑥 / 𝑥 ] ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
| 103 |
79 102
|
bitrd |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ↔ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) |
| 104 |
78 103
|
imbi12d |
⊢ ( suc 𝑥 ∈ ω → ( ( [ suc 𝑥 / 𝑥 ] ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → [ suc 𝑥 / 𝑥 ] ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) ) |
| 105 |
71 104
|
bitrd |
⊢ ( suc 𝑥 ∈ ω → ( [ suc 𝑥 / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ↔ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o suc 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o suc 𝑥 ) ) ) ) ) ) |
| 106 |
70 105
|
imbitrrid |
⊢ ( suc 𝑥 ∈ ω → ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) → [ suc 𝑥 / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) ) |
| 107 |
39 106
|
sylbi |
⊢ ( 𝑥 ∈ ω → ( ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) → [ suc 𝑥 / 𝑥 ] ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) ) |
| 108 |
38 107
|
findes |
⊢ ( 𝑥 ∈ ω → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑥 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑥 ) ) ) ) ) |
| 109 |
10 108
|
vtoclga |
⊢ ( 𝑋 ∈ ω → ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) ) |
| 110 |
1 109
|
mpcom |
⊢ ( ( 𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 𝐵 ) ‘ 𝑀 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ( 𝑁 +o 𝑋 ) ) = ( rec ( 𝐹 , 𝐵 ) ‘ ( 𝑀 +o 𝑋 ) ) ) ) |