Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( N e. On /\ M e. On /\ X e. _om ) -> X e. _om ) |
2 |
|
eleq1 |
|- ( x = X -> ( x e. _om <-> X e. _om ) ) |
3 |
2
|
3anbi3d |
|- ( x = X -> ( ( N e. On /\ M e. On /\ x e. _om ) <-> ( N e. On /\ M e. On /\ X e. _om ) ) ) |
4 |
|
oveq2 |
|- ( x = X -> ( N +o x ) = ( N +o X ) ) |
5 |
4
|
fveq2d |
|- ( x = X -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , A ) ` ( N +o X ) ) ) |
6 |
|
oveq2 |
|- ( x = X -> ( M +o x ) = ( M +o X ) ) |
7 |
6
|
fveq2d |
|- ( x = X -> ( rec ( F , B ) ` ( M +o x ) ) = ( rec ( F , B ) ` ( M +o X ) ) ) |
8 |
5 7
|
eqeq12d |
|- ( x = X -> ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) <-> ( rec ( F , A ) ` ( N +o X ) ) = ( rec ( F , B ) ` ( M +o X ) ) ) ) |
9 |
8
|
imbi2d |
|- ( x = X -> ( ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) <-> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o X ) ) = ( rec ( F , B ) ` ( M +o X ) ) ) ) ) |
10 |
3 9
|
imbi12d |
|- ( x = X -> ( ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) <-> ( ( N e. On /\ M e. On /\ X e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o X ) ) = ( rec ( F , B ) ` ( M +o X ) ) ) ) ) ) |
11 |
|
peano1 |
|- (/) e. _om |
12 |
|
oa0 |
|- ( N e. On -> ( N +o (/) ) = N ) |
13 |
12
|
fveq2d |
|- ( N e. On -> ( rec ( F , A ) ` ( N +o (/) ) ) = ( rec ( F , A ) ` N ) ) |
14 |
13
|
eqcomd |
|- ( N e. On -> ( rec ( F , A ) ` N ) = ( rec ( F , A ) ` ( N +o (/) ) ) ) |
15 |
|
oa0 |
|- ( M e. On -> ( M +o (/) ) = M ) |
16 |
15
|
fveq2d |
|- ( M e. On -> ( rec ( F , B ) ` ( M +o (/) ) ) = ( rec ( F , B ) ` M ) ) |
17 |
16
|
eqcomd |
|- ( M e. On -> ( rec ( F , B ) ` M ) = ( rec ( F , B ) ` ( M +o (/) ) ) ) |
18 |
14 17
|
eqeqan12d |
|- ( ( N e. On /\ M e. On ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) <-> ( rec ( F , A ) ` ( N +o (/) ) ) = ( rec ( F , B ) ` ( M +o (/) ) ) ) ) |
19 |
18
|
biimpd |
|- ( ( N e. On /\ M e. On ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o (/) ) ) = ( rec ( F , B ) ` ( M +o (/) ) ) ) ) |
20 |
|
eleq1 |
|- ( x = (/) -> ( x e. _om <-> (/) e. _om ) ) |
21 |
20
|
3anbi3d |
|- ( x = (/) -> ( ( N e. On /\ M e. On /\ x e. _om ) <-> ( N e. On /\ M e. On /\ (/) e. _om ) ) ) |
22 |
11
|
biantru |
|- ( M e. On <-> ( M e. On /\ (/) e. _om ) ) |
23 |
22
|
anbi2i |
|- ( ( N e. On /\ M e. On ) <-> ( N e. On /\ ( M e. On /\ (/) e. _om ) ) ) |
24 |
|
3anass |
|- ( ( N e. On /\ M e. On /\ (/) e. _om ) <-> ( N e. On /\ ( M e. On /\ (/) e. _om ) ) ) |
25 |
23 24
|
bitr4i |
|- ( ( N e. On /\ M e. On ) <-> ( N e. On /\ M e. On /\ (/) e. _om ) ) |
26 |
21 25
|
bitr4di |
|- ( x = (/) -> ( ( N e. On /\ M e. On /\ x e. _om ) <-> ( N e. On /\ M e. On ) ) ) |
27 |
|
oveq2 |
|- ( x = (/) -> ( N +o x ) = ( N +o (/) ) ) |
28 |
27
|
fveq2d |
|- ( x = (/) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , A ) ` ( N +o (/) ) ) ) |
29 |
|
oveq2 |
|- ( x = (/) -> ( M +o x ) = ( M +o (/) ) ) |
30 |
29
|
fveq2d |
|- ( x = (/) -> ( rec ( F , B ) ` ( M +o x ) ) = ( rec ( F , B ) ` ( M +o (/) ) ) ) |
31 |
28 30
|
eqeq12d |
|- ( x = (/) -> ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) <-> ( rec ( F , A ) ` ( N +o (/) ) ) = ( rec ( F , B ) ` ( M +o (/) ) ) ) ) |
32 |
31
|
imbi2d |
|- ( x = (/) -> ( ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) <-> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o (/) ) ) = ( rec ( F , B ) ` ( M +o (/) ) ) ) ) ) |
33 |
26 32
|
imbi12d |
|- ( x = (/) -> ( ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) <-> ( ( N e. On /\ M e. On ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o (/) ) ) = ( rec ( F , B ) ` ( M +o (/) ) ) ) ) ) ) |
34 |
19 33
|
mpbiri |
|- ( x = (/) -> ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) |
35 |
34
|
ax-gen |
|- A. x ( x = (/) -> ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) |
36 |
|
sbc6g |
|- ( (/) e. _om -> ( [. (/) / x ]. ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) <-> A. x ( x = (/) -> ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) ) ) |
37 |
35 36
|
mpbiri |
|- ( (/) e. _om -> [. (/) / x ]. ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) |
38 |
11 37
|
ax-mp |
|- [. (/) / x ]. ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) |
39 |
|
peano2b |
|- ( x e. _om <-> suc x e. _om ) |
40 |
39
|
3anbi3i |
|- ( ( N e. On /\ M e. On /\ x e. _om ) <-> ( N e. On /\ M e. On /\ suc x e. _om ) ) |
41 |
40
|
imbi1i |
|- ( ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) <-> ( ( N e. On /\ M e. On /\ suc x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) |
42 |
|
nnon |
|- ( x e. _om -> x e. On ) |
43 |
|
oacl |
|- ( ( N e. On /\ x e. On ) -> ( N +o x ) e. On ) |
44 |
|
oacl |
|- ( ( M e. On /\ x e. On ) -> ( M +o x ) e. On ) |
45 |
43 44
|
anim12i |
|- ( ( ( N e. On /\ x e. On ) /\ ( M e. On /\ x e. On ) ) -> ( ( N +o x ) e. On /\ ( M +o x ) e. On ) ) |
46 |
45
|
3impdir |
|- ( ( N e. On /\ M e. On /\ x e. On ) -> ( ( N +o x ) e. On /\ ( M +o x ) e. On ) ) |
47 |
|
rdgsuc |
|- ( ( N +o x ) e. On -> ( rec ( F , A ) ` suc ( N +o x ) ) = ( F ` ( rec ( F , A ) ` ( N +o x ) ) ) ) |
48 |
|
fveq2 |
|- ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) -> ( F ` ( rec ( F , A ) ` ( N +o x ) ) ) = ( F ` ( rec ( F , B ) ` ( M +o x ) ) ) ) |
49 |
47 48
|
sylan9eqr |
|- ( ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) /\ ( N +o x ) e. On ) -> ( rec ( F , A ) ` suc ( N +o x ) ) = ( F ` ( rec ( F , B ) ` ( M +o x ) ) ) ) |
50 |
49
|
adantrr |
|- ( ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) /\ ( ( N +o x ) e. On /\ ( M +o x ) e. On ) ) -> ( rec ( F , A ) ` suc ( N +o x ) ) = ( F ` ( rec ( F , B ) ` ( M +o x ) ) ) ) |
51 |
|
rdgsuc |
|- ( ( M +o x ) e. On -> ( rec ( F , B ) ` suc ( M +o x ) ) = ( F ` ( rec ( F , B ) ` ( M +o x ) ) ) ) |
52 |
51
|
ad2antll |
|- ( ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) /\ ( ( N +o x ) e. On /\ ( M +o x ) e. On ) ) -> ( rec ( F , B ) ` suc ( M +o x ) ) = ( F ` ( rec ( F , B ) ` ( M +o x ) ) ) ) |
53 |
50 52
|
eqtr4d |
|- ( ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) /\ ( ( N +o x ) e. On /\ ( M +o x ) e. On ) ) -> ( rec ( F , A ) ` suc ( N +o x ) ) = ( rec ( F , B ) ` suc ( M +o x ) ) ) |
54 |
46 53
|
sylan2 |
|- ( ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) /\ ( N e. On /\ M e. On /\ x e. On ) ) -> ( rec ( F , A ) ` suc ( N +o x ) ) = ( rec ( F , B ) ` suc ( M +o x ) ) ) |
55 |
54
|
ancoms |
|- ( ( ( N e. On /\ M e. On /\ x e. On ) /\ ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) -> ( rec ( F , A ) ` suc ( N +o x ) ) = ( rec ( F , B ) ` suc ( M +o x ) ) ) |
56 |
42 55
|
syl3anl3 |
|- ( ( ( N e. On /\ M e. On /\ x e. _om ) /\ ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) -> ( rec ( F , A ) ` suc ( N +o x ) ) = ( rec ( F , B ) ` suc ( M +o x ) ) ) |
57 |
|
onasuc |
|- ( ( N e. On /\ x e. _om ) -> ( N +o suc x ) = suc ( N +o x ) ) |
58 |
57
|
fveq2d |
|- ( ( N e. On /\ x e. _om ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , A ) ` suc ( N +o x ) ) ) |
59 |
58
|
3adant2 |
|- ( ( N e. On /\ M e. On /\ x e. _om ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , A ) ` suc ( N +o x ) ) ) |
60 |
59
|
adantr |
|- ( ( ( N e. On /\ M e. On /\ x e. _om ) /\ ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , A ) ` suc ( N +o x ) ) ) |
61 |
|
onasuc |
|- ( ( M e. On /\ x e. _om ) -> ( M +o suc x ) = suc ( M +o x ) ) |
62 |
61
|
fveq2d |
|- ( ( M e. On /\ x e. _om ) -> ( rec ( F , B ) ` ( M +o suc x ) ) = ( rec ( F , B ) ` suc ( M +o x ) ) ) |
63 |
62
|
3adant1 |
|- ( ( N e. On /\ M e. On /\ x e. _om ) -> ( rec ( F , B ) ` ( M +o suc x ) ) = ( rec ( F , B ) ` suc ( M +o x ) ) ) |
64 |
63
|
adantr |
|- ( ( ( N e. On /\ M e. On /\ x e. _om ) /\ ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) -> ( rec ( F , B ) ` ( M +o suc x ) ) = ( rec ( F , B ) ` suc ( M +o x ) ) ) |
65 |
56 60 64
|
3eqtr4d |
|- ( ( ( N e. On /\ M e. On /\ x e. _om ) /\ ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) |
66 |
65
|
ex |
|- ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) |
67 |
66
|
imim2d |
|- ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) ) |
68 |
40 67
|
sylbir |
|- ( ( N e. On /\ M e. On /\ suc x e. _om ) -> ( ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) ) |
69 |
68
|
a2i |
|- ( ( ( N e. On /\ M e. On /\ suc x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) -> ( ( N e. On /\ M e. On /\ suc x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) ) |
70 |
41 69
|
sylbi |
|- ( ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) -> ( ( N e. On /\ M e. On /\ suc x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) ) |
71 |
|
sbcimg |
|- ( suc x e. _om -> ( [. suc x / x ]. ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) <-> ( [. suc x / x ]. ( N e. On /\ M e. On /\ x e. _om ) -> [. suc x / x ]. ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) ) |
72 |
|
sbc3an |
|- ( [. suc x / x ]. ( N e. On /\ M e. On /\ x e. _om ) <-> ( [. suc x / x ]. N e. On /\ [. suc x / x ]. M e. On /\ [. suc x / x ]. x e. _om ) ) |
73 |
|
sbcg |
|- ( suc x e. _om -> ( [. suc x / x ]. N e. On <-> N e. On ) ) |
74 |
|
sbcg |
|- ( suc x e. _om -> ( [. suc x / x ]. M e. On <-> M e. On ) ) |
75 |
|
sbcel1v |
|- ( [. suc x / x ]. x e. _om <-> suc x e. _om ) |
76 |
75
|
a1i |
|- ( suc x e. _om -> ( [. suc x / x ]. x e. _om <-> suc x e. _om ) ) |
77 |
73 74 76
|
3anbi123d |
|- ( suc x e. _om -> ( ( [. suc x / x ]. N e. On /\ [. suc x / x ]. M e. On /\ [. suc x / x ]. x e. _om ) <-> ( N e. On /\ M e. On /\ suc x e. _om ) ) ) |
78 |
72 77
|
syl5bb |
|- ( suc x e. _om -> ( [. suc x / x ]. ( N e. On /\ M e. On /\ x e. _om ) <-> ( N e. On /\ M e. On /\ suc x e. _om ) ) ) |
79 |
|
sbcimg |
|- ( suc x e. _om -> ( [. suc x / x ]. ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) <-> ( [. suc x / x ]. ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> [. suc x / x ]. ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) |
80 |
|
sbcg |
|- ( suc x e. _om -> ( [. suc x / x ]. ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) <-> ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) ) ) |
81 |
|
sbceqg |
|- ( suc x e. _om -> ( [. suc x / x ]. ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) <-> [_ suc x / x ]_ ( rec ( F , A ) ` ( N +o x ) ) = [_ suc x / x ]_ ( rec ( F , B ) ` ( M +o x ) ) ) ) |
82 |
|
csbfv12 |
|- [_ suc x / x ]_ ( rec ( F , A ) ` ( N +o x ) ) = ( [_ suc x / x ]_ rec ( F , A ) ` [_ suc x / x ]_ ( N +o x ) ) |
83 |
|
csbconstg |
|- ( suc x e. _om -> [_ suc x / x ]_ rec ( F , A ) = rec ( F , A ) ) |
84 |
|
csbov123 |
|- [_ suc x / x ]_ ( N +o x ) = ( [_ suc x / x ]_ N [_ suc x / x ]_ +o [_ suc x / x ]_ x ) |
85 |
|
csbconstg |
|- ( suc x e. _om -> [_ suc x / x ]_ +o = +o ) |
86 |
|
csbconstg |
|- ( suc x e. _om -> [_ suc x / x ]_ N = N ) |
87 |
|
csbvarg |
|- ( suc x e. _om -> [_ suc x / x ]_ x = suc x ) |
88 |
85 86 87
|
oveq123d |
|- ( suc x e. _om -> ( [_ suc x / x ]_ N [_ suc x / x ]_ +o [_ suc x / x ]_ x ) = ( N +o suc x ) ) |
89 |
84 88
|
eqtrid |
|- ( suc x e. _om -> [_ suc x / x ]_ ( N +o x ) = ( N +o suc x ) ) |
90 |
83 89
|
fveq12d |
|- ( suc x e. _om -> ( [_ suc x / x ]_ rec ( F , A ) ` [_ suc x / x ]_ ( N +o x ) ) = ( rec ( F , A ) ` ( N +o suc x ) ) ) |
91 |
82 90
|
eqtrid |
|- ( suc x e. _om -> [_ suc x / x ]_ ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , A ) ` ( N +o suc x ) ) ) |
92 |
|
csbfv12 |
|- [_ suc x / x ]_ ( rec ( F , B ) ` ( M +o x ) ) = ( [_ suc x / x ]_ rec ( F , B ) ` [_ suc x / x ]_ ( M +o x ) ) |
93 |
|
csbconstg |
|- ( suc x e. _om -> [_ suc x / x ]_ rec ( F , B ) = rec ( F , B ) ) |
94 |
|
csbov123 |
|- [_ suc x / x ]_ ( M +o x ) = ( [_ suc x / x ]_ M [_ suc x / x ]_ +o [_ suc x / x ]_ x ) |
95 |
|
csbconstg |
|- ( suc x e. _om -> [_ suc x / x ]_ M = M ) |
96 |
85 95 87
|
oveq123d |
|- ( suc x e. _om -> ( [_ suc x / x ]_ M [_ suc x / x ]_ +o [_ suc x / x ]_ x ) = ( M +o suc x ) ) |
97 |
94 96
|
eqtrid |
|- ( suc x e. _om -> [_ suc x / x ]_ ( M +o x ) = ( M +o suc x ) ) |
98 |
93 97
|
fveq12d |
|- ( suc x e. _om -> ( [_ suc x / x ]_ rec ( F , B ) ` [_ suc x / x ]_ ( M +o x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) |
99 |
92 98
|
eqtrid |
|- ( suc x e. _om -> [_ suc x / x ]_ ( rec ( F , B ) ` ( M +o x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) |
100 |
91 99
|
eqeq12d |
|- ( suc x e. _om -> ( [_ suc x / x ]_ ( rec ( F , A ) ` ( N +o x ) ) = [_ suc x / x ]_ ( rec ( F , B ) ` ( M +o x ) ) <-> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) |
101 |
81 100
|
bitrd |
|- ( suc x e. _om -> ( [. suc x / x ]. ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) <-> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) |
102 |
80 101
|
imbi12d |
|- ( suc x e. _om -> ( ( [. suc x / x ]. ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> [. suc x / x ]. ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) <-> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) ) |
103 |
79 102
|
bitrd |
|- ( suc x e. _om -> ( [. suc x / x ]. ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) <-> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) ) |
104 |
78 103
|
imbi12d |
|- ( suc x e. _om -> ( ( [. suc x / x ]. ( N e. On /\ M e. On /\ x e. _om ) -> [. suc x / x ]. ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) <-> ( ( N e. On /\ M e. On /\ suc x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) ) ) |
105 |
71 104
|
bitrd |
|- ( suc x e. _om -> ( [. suc x / x ]. ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) <-> ( ( N e. On /\ M e. On /\ suc x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o suc x ) ) = ( rec ( F , B ) ` ( M +o suc x ) ) ) ) ) ) |
106 |
70 105
|
syl5ibr |
|- ( suc x e. _om -> ( ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) -> [. suc x / x ]. ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) ) |
107 |
39 106
|
sylbi |
|- ( x e. _om -> ( ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) -> [. suc x / x ]. ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) ) |
108 |
38 107
|
findes |
|- ( x e. _om -> ( ( N e. On /\ M e. On /\ x e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o x ) ) = ( rec ( F , B ) ` ( M +o x ) ) ) ) ) |
109 |
10 108
|
vtoclga |
|- ( X e. _om -> ( ( N e. On /\ M e. On /\ X e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o X ) ) = ( rec ( F , B ) ` ( M +o X ) ) ) ) ) |
110 |
1 109
|
mpcom |
|- ( ( N e. On /\ M e. On /\ X e. _om ) -> ( ( rec ( F , A ) ` N ) = ( rec ( F , B ) ` M ) -> ( rec ( F , A ) ` ( N +o X ) ) = ( rec ( F , B ) ` ( M +o X ) ) ) ) |