Step |
Hyp |
Ref |
Expression |
1 |
|
xp1st |
|- ( A e. ( B X. C ) -> ( 1st ` A ) e. B ) |
2 |
|
ssv |
|- B C_ _V |
3 |
|
ssid |
|- C C_ C |
4 |
|
xpss12 |
|- ( ( B C_ _V /\ C C_ C ) -> ( B X. C ) C_ ( _V X. C ) ) |
5 |
2 3 4
|
mp2an |
|- ( B X. C ) C_ ( _V X. C ) |
6 |
5
|
sseli |
|- ( A e. ( B X. C ) -> A e. ( _V X. C ) ) |
7 |
1 6
|
jca |
|- ( A e. ( B X. C ) -> ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) ) |
8 |
|
xpss |
|- ( _V X. C ) C_ ( _V X. _V ) |
9 |
8
|
sseli |
|- ( A e. ( _V X. C ) -> A e. ( _V X. _V ) ) |
10 |
9
|
adantl |
|- ( ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) -> A e. ( _V X. _V ) ) |
11 |
|
xp2nd |
|- ( A e. ( _V X. C ) -> ( 2nd ` A ) e. C ) |
12 |
11
|
anim2i |
|- ( ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) -> ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) |
13 |
|
elxp7 |
|- ( A e. ( B X. C ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |
14 |
10 12 13
|
sylanbrc |
|- ( ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) -> A e. ( B X. C ) ) |
15 |
7 14
|
impbii |
|- ( A e. ( B X. C ) <-> ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) ) |