| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xp1st |
|- ( A e. ( B X. C ) -> ( 1st ` A ) e. B ) |
| 2 |
|
ssv |
|- B C_ _V |
| 3 |
|
ssid |
|- C C_ C |
| 4 |
|
xpss12 |
|- ( ( B C_ _V /\ C C_ C ) -> ( B X. C ) C_ ( _V X. C ) ) |
| 5 |
2 3 4
|
mp2an |
|- ( B X. C ) C_ ( _V X. C ) |
| 6 |
5
|
sseli |
|- ( A e. ( B X. C ) -> A e. ( _V X. C ) ) |
| 7 |
1 6
|
jca |
|- ( A e. ( B X. C ) -> ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) ) |
| 8 |
|
xpss |
|- ( _V X. C ) C_ ( _V X. _V ) |
| 9 |
8
|
sseli |
|- ( A e. ( _V X. C ) -> A e. ( _V X. _V ) ) |
| 10 |
9
|
adantl |
|- ( ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) -> A e. ( _V X. _V ) ) |
| 11 |
|
xp2nd |
|- ( A e. ( _V X. C ) -> ( 2nd ` A ) e. C ) |
| 12 |
11
|
anim2i |
|- ( ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) -> ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) |
| 13 |
|
elxp7 |
|- ( A e. ( B X. C ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |
| 14 |
10 12 13
|
sylanbrc |
|- ( ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) -> A e. ( B X. C ) ) |
| 15 |
7 14
|
impbii |
|- ( A e. ( B X. C ) <-> ( ( 1st ` A ) e. B /\ A e. ( _V X. C ) ) ) |