Step |
Hyp |
Ref |
Expression |
1 |
|
xp1st |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( 1st ‘ 𝐴 ) ∈ 𝐵 ) |
2 |
|
ssv |
⊢ 𝐵 ⊆ V |
3 |
|
ssid |
⊢ 𝐶 ⊆ 𝐶 |
4 |
|
xpss12 |
⊢ ( ( 𝐵 ⊆ V ∧ 𝐶 ⊆ 𝐶 ) → ( 𝐵 × 𝐶 ) ⊆ ( V × 𝐶 ) ) |
5 |
2 3 4
|
mp2an |
⊢ ( 𝐵 × 𝐶 ) ⊆ ( V × 𝐶 ) |
6 |
5
|
sseli |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → 𝐴 ∈ ( V × 𝐶 ) ) |
7 |
1 6
|
jca |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐴 ∈ ( V × 𝐶 ) ) ) |
8 |
|
xpss |
⊢ ( V × 𝐶 ) ⊆ ( V × V ) |
9 |
8
|
sseli |
⊢ ( 𝐴 ∈ ( V × 𝐶 ) → 𝐴 ∈ ( V × V ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐴 ∈ ( V × 𝐶 ) ) → 𝐴 ∈ ( V × V ) ) |
11 |
|
xp2nd |
⊢ ( 𝐴 ∈ ( V × 𝐶 ) → ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) |
12 |
11
|
anim2i |
⊢ ( ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐴 ∈ ( V × 𝐶 ) ) → ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) |
13 |
|
elxp7 |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) |
14 |
10 12 13
|
sylanbrc |
⊢ ( ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐴 ∈ ( V × 𝐶 ) ) → 𝐴 ∈ ( 𝐵 × 𝐶 ) ) |
15 |
7 14
|
impbii |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐴 ∈ ( V × 𝐶 ) ) ) |