Metamath Proof Explorer


Theorem elxp8

Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 . (Contributed by ML, 19-Oct-2020)

Ref Expression
Assertion elxp8 ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( ( 1st𝐴 ) ∈ 𝐵𝐴 ∈ ( V × 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 xp1st ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( 1st𝐴 ) ∈ 𝐵 )
2 ssv 𝐵 ⊆ V
3 ssid 𝐶𝐶
4 xpss12 ( ( 𝐵 ⊆ V ∧ 𝐶𝐶 ) → ( 𝐵 × 𝐶 ) ⊆ ( V × 𝐶 ) )
5 2 3 4 mp2an ( 𝐵 × 𝐶 ) ⊆ ( V × 𝐶 )
6 5 sseli ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → 𝐴 ∈ ( V × 𝐶 ) )
7 1 6 jca ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( ( 1st𝐴 ) ∈ 𝐵𝐴 ∈ ( V × 𝐶 ) ) )
8 xpss ( V × 𝐶 ) ⊆ ( V × V )
9 8 sseli ( 𝐴 ∈ ( V × 𝐶 ) → 𝐴 ∈ ( V × V ) )
10 9 adantl ( ( ( 1st𝐴 ) ∈ 𝐵𝐴 ∈ ( V × 𝐶 ) ) → 𝐴 ∈ ( V × V ) )
11 xp2nd ( 𝐴 ∈ ( V × 𝐶 ) → ( 2nd𝐴 ) ∈ 𝐶 )
12 11 anim2i ( ( ( 1st𝐴 ) ∈ 𝐵𝐴 ∈ ( V × 𝐶 ) ) → ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) )
13 elxp7 ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) )
14 10 12 13 sylanbrc ( ( ( 1st𝐴 ) ∈ 𝐵𝐴 ∈ ( V × 𝐶 ) ) → 𝐴 ∈ ( 𝐵 × 𝐶 ) )
15 7 14 impbii ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( ( 1st𝐴 ) ∈ 𝐵𝐴 ∈ ( V × 𝐶 ) ) )