| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							findes.1 | 
							 |-  [. (/) / x ]. ph  | 
						
						
							| 2 | 
							
								
							 | 
							findes.2 | 
							 |-  ( x e. _om -> ( ph -> [. suc x / x ]. ph ) )  | 
						
						
							| 3 | 
							
								
							 | 
							dfsbcq2 | 
							 |-  ( z = (/) -> ( [ z / x ] ph <-> [. (/) / x ]. ph ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sbequ | 
							 |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) )  | 
						
						
							| 5 | 
							
								
							 | 
							dfsbcq2 | 
							 |-  ( z = suc y -> ( [ z / x ] ph <-> [. suc y / x ]. ph ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sbequ12r | 
							 |-  ( z = x -> ( [ z / x ] ph <-> ph ) )  | 
						
						
							| 7 | 
							
								
							 | 
							nfv | 
							 |-  F/ x y e. _om  | 
						
						
							| 8 | 
							
								
							 | 
							nfs1v | 
							 |-  F/ x [ y / x ] ph  | 
						
						
							| 9 | 
							
								
							 | 
							nfsbc1v | 
							 |-  F/ x [. suc y / x ]. ph  | 
						
						
							| 10 | 
							
								8 9
							 | 
							nfim | 
							 |-  F/ x ( [ y / x ] ph -> [. suc y / x ]. ph )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							nfim | 
							 |-  F/ x ( y e. _om -> ( [ y / x ] ph -> [. suc y / x ]. ph ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eleq1w | 
							 |-  ( x = y -> ( x e. _om <-> y e. _om ) )  | 
						
						
							| 13 | 
							
								
							 | 
							sbequ12 | 
							 |-  ( x = y -> ( ph <-> [ y / x ] ph ) )  | 
						
						
							| 14 | 
							
								
							 | 
							suceq | 
							 |-  ( x = y -> suc x = suc y )  | 
						
						
							| 15 | 
							
								14
							 | 
							sbceq1d | 
							 |-  ( x = y -> ( [. suc x / x ]. ph <-> [. suc y / x ]. ph ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							imbi12d | 
							 |-  ( x = y -> ( ( ph -> [. suc x / x ]. ph ) <-> ( [ y / x ] ph -> [. suc y / x ]. ph ) ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							imbi12d | 
							 |-  ( x = y -> ( ( x e. _om -> ( ph -> [. suc x / x ]. ph ) ) <-> ( y e. _om -> ( [ y / x ] ph -> [. suc y / x ]. ph ) ) ) )  | 
						
						
							| 18 | 
							
								11 17 2
							 | 
							chvarfv | 
							 |-  ( y e. _om -> ( [ y / x ] ph -> [. suc y / x ]. ph ) )  | 
						
						
							| 19 | 
							
								3 4 5 6 1 18
							 | 
							finds | 
							 |-  ( x e. _om -> ph )  |