| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							findes.1 | 
							⊢ [ ∅  /  𝑥 ] 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							findes.2 | 
							⊢ ( 𝑥  ∈  ω  →  ( 𝜑  →  [ suc  𝑥  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							dfsbcq2 | 
							⊢ ( 𝑧  =  ∅  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ ∅  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sbequ | 
							⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							dfsbcq2 | 
							⊢ ( 𝑧  =  suc  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ suc  𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sbequ12r | 
							⊢ ( 𝑧  =  𝑥  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜑 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑦  ∈  ω  | 
						
						
							| 8 | 
							
								
							 | 
							nfs1v | 
							⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜑  | 
						
						
							| 9 | 
							
								
							 | 
							nfsbc1v | 
							⊢ Ⅎ 𝑥 [ suc  𝑦  /  𝑥 ] 𝜑  | 
						
						
							| 10 | 
							
								8 9
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ suc  𝑦  /  𝑥 ] 𝜑 )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( 𝑦  ∈  ω  →  ( [ 𝑦  /  𝑥 ] 𝜑  →  [ suc  𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ω  ↔  𝑦  ∈  ω ) )  | 
						
						
							| 13 | 
							
								
							 | 
							sbequ12 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							suceq | 
							⊢ ( 𝑥  =  𝑦  →  suc  𝑥  =  suc  𝑦 )  | 
						
						
							| 15 | 
							
								14
							 | 
							sbceq1d | 
							⊢ ( 𝑥  =  𝑦  →  ( [ suc  𝑥  /  𝑥 ] 𝜑  ↔  [ suc  𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  [ suc  𝑥  /  𝑥 ] 𝜑 )  ↔  ( [ 𝑦  /  𝑥 ] 𝜑  →  [ suc  𝑦  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  ω  →  ( 𝜑  →  [ suc  𝑥  /  𝑥 ] 𝜑 ) )  ↔  ( 𝑦  ∈  ω  →  ( [ 𝑦  /  𝑥 ] 𝜑  →  [ suc  𝑦  /  𝑥 ] 𝜑 ) ) ) )  | 
						
						
							| 18 | 
							
								11 17 2
							 | 
							chvarfv | 
							⊢ ( 𝑦  ∈  ω  →  ( [ 𝑦  /  𝑥 ] 𝜑  →  [ suc  𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 19 | 
							
								3 4 5 6 1 18
							 | 
							finds | 
							⊢ ( 𝑥  ∈  ω  →  𝜑 )  |