Step |
Hyp |
Ref |
Expression |
1 |
|
onsucuni3 |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> B = suc U. B ) |
2 |
1
|
fveq2d |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( rec ( F , I ) ` B ) = ( rec ( F , I ) ` suc U. B ) ) |
3 |
|
onuni |
|- ( B e. On -> U. B e. On ) |
4 |
3
|
3ad2ant1 |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> U. B e. On ) |
5 |
|
rdgsuc |
|- ( U. B e. On -> ( rec ( F , I ) ` suc U. B ) = ( F ` ( rec ( F , I ) ` U. B ) ) ) |
6 |
4 5
|
syl |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( rec ( F , I ) ` suc U. B ) = ( F ` ( rec ( F , I ) ` U. B ) ) ) |
7 |
2 6
|
eqtrd |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( rec ( F , I ) ` B ) = ( F ` ( rec ( F , I ) ` U. B ) ) ) |