Metamath Proof Explorer


Theorem rdgsucuni

Description: If an ordinal number has a predecessor, the value of the recursive definition generator at that number in terms of its predecessor. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion rdgsucuni
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( rec ( F , I ) ` B ) = ( F ` ( rec ( F , I ) ` U. B ) ) )

Proof

Step Hyp Ref Expression
1 onsucuni3
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> B = suc U. B )
2 1 fveq2d
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( rec ( F , I ) ` B ) = ( rec ( F , I ) ` suc U. B ) )
3 onuni
 |-  ( B e. On -> U. B e. On )
4 3 3ad2ant1
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> U. B e. On )
5 rdgsuc
 |-  ( U. B e. On -> ( rec ( F , I ) ` suc U. B ) = ( F ` ( rec ( F , I ) ` U. B ) ) )
6 4 5 syl
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( rec ( F , I ) ` suc U. B ) = ( F ` ( rec ( F , I ) ` U. B ) ) )
7 2 6 eqtrd
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( rec ( F , I ) ` B ) = ( F ` ( rec ( F , I ) ` U. B ) ) )