Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
|- ( B e. On -> Ord B ) |
2 |
1
|
3ad2ant1 |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> Ord B ) |
3 |
|
orduniorsuc |
|- ( Ord B -> ( B = U. B \/ B = suc U. B ) ) |
4 |
2 3
|
syl |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( B = U. B \/ B = suc U. B ) ) |
5 |
4
|
orcomd |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( B = suc U. B \/ B = U. B ) ) |
6 |
|
simp2 |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> B =/= (/) ) |
7 |
|
df-lim |
|- ( Lim B <-> ( Ord B /\ B =/= (/) /\ B = U. B ) ) |
8 |
7
|
biimpri |
|- ( ( Ord B /\ B =/= (/) /\ B = U. B ) -> Lim B ) |
9 |
8
|
3expb |
|- ( ( Ord B /\ ( B =/= (/) /\ B = U. B ) ) -> Lim B ) |
10 |
9
|
con3i |
|- ( -. Lim B -> -. ( Ord B /\ ( B =/= (/) /\ B = U. B ) ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> -. ( Ord B /\ ( B =/= (/) /\ B = U. B ) ) ) |
12 |
2 11
|
mpnanrd |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> -. ( B =/= (/) /\ B = U. B ) ) |
13 |
6 12
|
mpnanrd |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> -. B = U. B ) |
14 |
|
orcom |
|- ( ( B = suc U. B \/ B = U. B ) <-> ( B = U. B \/ B = suc U. B ) ) |
15 |
|
df-or |
|- ( ( B = U. B \/ B = suc U. B ) <-> ( -. B = U. B -> B = suc U. B ) ) |
16 |
14 15
|
sylbb |
|- ( ( B = suc U. B \/ B = U. B ) -> ( -. B = U. B -> B = suc U. B ) ) |
17 |
5 13 16
|
sylc |
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> B = suc U. B ) |