Metamath Proof Explorer


Theorem onsucuni3

Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion onsucuni3
|- ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> B = suc U. B )

Proof

Step Hyp Ref Expression
1 eloni
 |-  ( B e. On -> Ord B )
2 1 3ad2ant1
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> Ord B )
3 orduniorsuc
 |-  ( Ord B -> ( B = U. B \/ B = suc U. B ) )
4 2 3 syl
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( B = U. B \/ B = suc U. B ) )
5 4 orcomd
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> ( B = suc U. B \/ B = U. B ) )
6 simp2
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> B =/= (/) )
7 df-lim
 |-  ( Lim B <-> ( Ord B /\ B =/= (/) /\ B = U. B ) )
8 7 biimpri
 |-  ( ( Ord B /\ B =/= (/) /\ B = U. B ) -> Lim B )
9 8 3expb
 |-  ( ( Ord B /\ ( B =/= (/) /\ B = U. B ) ) -> Lim B )
10 9 con3i
 |-  ( -. Lim B -> -. ( Ord B /\ ( B =/= (/) /\ B = U. B ) ) )
11 10 3ad2ant3
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> -. ( Ord B /\ ( B =/= (/) /\ B = U. B ) ) )
12 2 11 mpnanrd
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> -. ( B =/= (/) /\ B = U. B ) )
13 6 12 mpnanrd
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> -. B = U. B )
14 orcom
 |-  ( ( B = suc U. B \/ B = U. B ) <-> ( B = U. B \/ B = suc U. B ) )
15 df-or
 |-  ( ( B = U. B \/ B = suc U. B ) <-> ( -. B = U. B -> B = suc U. B ) )
16 14 15 sylbb
 |-  ( ( B = suc U. B \/ B = U. B ) -> ( -. B = U. B -> B = suc U. B ) )
17 5 13 16 sylc
 |-  ( ( B e. On /\ B =/= (/) /\ -. Lim B ) -> B = suc U. B )