Metamath Proof Explorer


Theorem onsucuni3

Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion onsucuni3 B On B ¬ Lim B B = suc B

Proof

Step Hyp Ref Expression
1 eloni B On Ord B
2 1 3ad2ant1 B On B ¬ Lim B Ord B
3 orduniorsuc Ord B B = B B = suc B
4 2 3 syl B On B ¬ Lim B B = B B = suc B
5 4 orcomd B On B ¬ Lim B B = suc B B = B
6 simp2 B On B ¬ Lim B B
7 df-lim Lim B Ord B B B = B
8 7 biimpri Ord B B B = B Lim B
9 8 3expb Ord B B B = B Lim B
10 9 con3i ¬ Lim B ¬ Ord B B B = B
11 10 3ad2ant3 B On B ¬ Lim B ¬ Ord B B B = B
12 2 11 mpnanrd B On B ¬ Lim B ¬ B B = B
13 6 12 mpnanrd B On B ¬ Lim B ¬ B = B
14 orcom B = suc B B = B B = B B = suc B
15 df-or B = B B = suc B ¬ B = B B = suc B
16 14 15 sylbb B = suc B B = B ¬ B = B B = suc B
17 5 13 16 sylc B On B ¬ Lim B B = suc B