Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → Ord 𝐵 ) |
3 |
|
orduniorsuc |
⊢ ( Ord 𝐵 → ( 𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( 𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵 ) ) |
5 |
4
|
orcomd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( 𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵 ) ) |
6 |
|
simp2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → 𝐵 ≠ ∅ ) |
7 |
|
df-lim |
⊢ ( Lim 𝐵 ↔ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵 ) ) |
8 |
7
|
biimpri |
⊢ ( ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵 ) → Lim 𝐵 ) |
9 |
8
|
3expb |
⊢ ( ( Ord 𝐵 ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵 ) ) → Lim 𝐵 ) |
10 |
9
|
con3i |
⊢ ( ¬ Lim 𝐵 → ¬ ( Ord 𝐵 ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵 ) ) ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ¬ ( Ord 𝐵 ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵 ) ) ) |
12 |
2 11
|
mpnanrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ¬ ( 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵 ) ) |
13 |
6 12
|
mpnanrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ¬ 𝐵 = ∪ 𝐵 ) |
14 |
|
orcom |
⊢ ( ( 𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵 ) ↔ ( 𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵 ) ) |
15 |
|
df-or |
⊢ ( ( 𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵 ) ↔ ( ¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵 ) ) |
16 |
14 15
|
sylbb |
⊢ ( ( 𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵 ) → ( ¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵 ) ) |
17 |
5 13 16
|
sylc |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → 𝐵 = suc ∪ 𝐵 ) |