Metamath Proof Explorer


Theorem onsucuni3

Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion onsucuni3 ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → 𝐵 = suc 𝐵 )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐵 ∈ On → Ord 𝐵 )
2 1 3ad2ant1 ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → Ord 𝐵 )
3 orduniorsuc ( Ord 𝐵 → ( 𝐵 = 𝐵𝐵 = suc 𝐵 ) )
4 2 3 syl ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( 𝐵 = 𝐵𝐵 = suc 𝐵 ) )
5 4 orcomd ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ( 𝐵 = suc 𝐵𝐵 = 𝐵 ) )
6 simp2 ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → 𝐵 ≠ ∅ )
7 df-lim ( Lim 𝐵 ↔ ( Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵 ) )
8 7 biimpri ( ( Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵 ) → Lim 𝐵 )
9 8 3expb ( ( Ord 𝐵 ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 = 𝐵 ) ) → Lim 𝐵 )
10 9 con3i ( ¬ Lim 𝐵 → ¬ ( Ord 𝐵 ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 = 𝐵 ) ) )
11 10 3ad2ant3 ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ¬ ( Ord 𝐵 ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 = 𝐵 ) ) )
12 2 11 mpnanrd ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ¬ ( 𝐵 ≠ ∅ ∧ 𝐵 = 𝐵 ) )
13 6 12 mpnanrd ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → ¬ 𝐵 = 𝐵 )
14 orcom ( ( 𝐵 = suc 𝐵𝐵 = 𝐵 ) ↔ ( 𝐵 = 𝐵𝐵 = suc 𝐵 ) )
15 df-or ( ( 𝐵 = 𝐵𝐵 = suc 𝐵 ) ↔ ( ¬ 𝐵 = 𝐵𝐵 = suc 𝐵 ) )
16 14 15 sylbb ( ( 𝐵 = suc 𝐵𝐵 = 𝐵 ) → ( ¬ 𝐵 = 𝐵𝐵 = suc 𝐵 ) )
17 5 13 16 sylc ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵 ) → 𝐵 = suc 𝐵 )