| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-2o |
⊢ 2o = suc 1o |
| 2 |
|
2on |
⊢ 2o ∈ On |
| 3 |
|
2on0 |
⊢ 2o ≠ ∅ |
| 4 |
|
2onn |
⊢ 2o ∈ ω |
| 5 |
|
nnlim |
⊢ ( 2o ∈ ω → ¬ Lim 2o ) |
| 6 |
4 5
|
ax-mp |
⊢ ¬ Lim 2o |
| 7 |
|
onsucuni3 |
⊢ ( ( 2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o ) → 2o = suc ∪ 2o ) |
| 8 |
2 3 6 7
|
mp3an |
⊢ 2o = suc ∪ 2o |
| 9 |
1 8
|
eqtr3i |
⊢ suc 1o = suc ∪ 2o |
| 10 |
|
1on |
⊢ 1o ∈ On |
| 11 |
|
onuni |
⊢ ( 2o ∈ On → ∪ 2o ∈ On ) |
| 12 |
2 11
|
ax-mp |
⊢ ∪ 2o ∈ On |
| 13 |
|
suc11 |
⊢ ( ( 1o ∈ On ∧ ∪ 2o ∈ On ) → ( suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o ) ) |
| 14 |
10 12 13
|
mp2an |
⊢ ( suc 1o = suc ∪ 2o ↔ 1o = ∪ 2o ) |
| 15 |
9 14
|
mpbi |
⊢ 1o = ∪ 2o |