Metamath Proof Explorer


Theorem 1oequni2o

Description: The ordinal number 1o is the predecessor of the ordinal number 2o . (Contributed by ML, 19-Oct-2020)

Ref Expression
Assertion 1oequni2o 1o = 2o

Proof

Step Hyp Ref Expression
1 df-2o 2o = suc 1o
2 2on 2o ∈ On
3 2on0 2o ≠ ∅
4 2onn 2o ∈ ω
5 nnlim ( 2o ∈ ω → ¬ Lim 2o )
6 4 5 ax-mp ¬ Lim 2o
7 onsucuni3 ( ( 2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o ) → 2o = suc 2o )
8 2 3 6 7 mp3an 2o = suc 2o
9 1 8 eqtr3i suc 1o = suc 2o
10 1on 1o ∈ On
11 onuni ( 2o ∈ On → 2o ∈ On )
12 2 11 ax-mp 2o ∈ On
13 suc11 ( ( 1o ∈ On ∧ 2o ∈ On ) → ( suc 1o = suc 2o ↔ 1o = 2o ) )
14 10 12 13 mp2an ( suc 1o = suc 2o ↔ 1o = 2o )
15 9 14 mpbi 1o = 2o