Description: The ordinal number 1o is the predecessor of the ordinal number 2o . (Contributed by ML, 19-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | 1oequni2o | |- 1o = U. 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o | |- 2o = suc 1o |
|
2 | 2on | |- 2o e. On |
|
3 | 2on0 | |- 2o =/= (/) |
|
4 | 2onn | |- 2o e. _om |
|
5 | nnlim | |- ( 2o e. _om -> -. Lim 2o ) |
|
6 | 4 5 | ax-mp | |- -. Lim 2o |
7 | onsucuni3 | |- ( ( 2o e. On /\ 2o =/= (/) /\ -. Lim 2o ) -> 2o = suc U. 2o ) |
|
8 | 2 3 6 7 | mp3an | |- 2o = suc U. 2o |
9 | 1 8 | eqtr3i | |- suc 1o = suc U. 2o |
10 | 1on | |- 1o e. On |
|
11 | onuni | |- ( 2o e. On -> U. 2o e. On ) |
|
12 | 2 11 | ax-mp | |- U. 2o e. On |
13 | suc11 | |- ( ( 1o e. On /\ U. 2o e. On ) -> ( suc 1o = suc U. 2o <-> 1o = U. 2o ) ) |
|
14 | 10 12 13 | mp2an | |- ( suc 1o = suc U. 2o <-> 1o = U. 2o ) |
15 | 9 14 | mpbi | |- 1o = U. 2o |