Step |
Hyp |
Ref |
Expression |
1 |
|
finxpreclem3.1 |
⊢ 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
2 |
1
|
a1i |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑋 ∈ ( V × 𝑈 ) ) → 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 = 1o ↔ 𝑁 = 1o ) ) |
4 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) |
5 |
3 4
|
bi2anan9 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) ↔ ( 𝑁 = 1o ∧ 𝑋 ∈ 𝑈 ) ) ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( V × 𝑈 ) ↔ 𝑋 ∈ ( V × 𝑈 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ∈ ( V × 𝑈 ) ↔ 𝑋 ∈ ( V × 𝑈 ) ) ) |
8 |
|
unieq |
⊢ ( 𝑛 = 𝑁 → ∪ 𝑛 = ∪ 𝑁 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ∪ 𝑛 = ∪ 𝑁 ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑋 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑋 ) ) |
12 |
9 11
|
opeq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 = 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 ) |
13 |
|
opeq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → 〈 𝑛 , 𝑥 〉 = 〈 𝑁 , 𝑋 〉 ) |
14 |
7 12 13
|
ifbieq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) = if ( 𝑋 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 , 〈 𝑁 , 𝑋 〉 ) ) |
15 |
5 14
|
ifbieq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = if ( ( 𝑁 = 1o ∧ 𝑋 ∈ 𝑈 ) , ∅ , if ( 𝑋 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 , 〈 𝑁 , 𝑋 〉 ) ) ) |
16 |
|
sssucid |
⊢ 1o ⊆ suc 1o |
17 |
|
df-2o |
⊢ 2o = suc 1o |
18 |
16 17
|
sseqtrri |
⊢ 1o ⊆ 2o |
19 |
|
1on |
⊢ 1o ∈ On |
20 |
17 19
|
sucneqoni |
⊢ 2o ≠ 1o |
21 |
20
|
necomi |
⊢ 1o ≠ 2o |
22 |
|
df-pss |
⊢ ( 1o ⊊ 2o ↔ ( 1o ⊆ 2o ∧ 1o ≠ 2o ) ) |
23 |
18 21 22
|
mpbir2an |
⊢ 1o ⊊ 2o |
24 |
|
ssnpss |
⊢ ( 2o ⊆ 1o → ¬ 1o ⊊ 2o ) |
25 |
23 24
|
mt2 |
⊢ ¬ 2o ⊆ 1o |
26 |
|
sseq2 |
⊢ ( 𝑁 = 1o → ( 2o ⊆ 𝑁 ↔ 2o ⊆ 1o ) ) |
27 |
25 26
|
mtbiri |
⊢ ( 𝑁 = 1o → ¬ 2o ⊆ 𝑁 ) |
28 |
27
|
con2i |
⊢ ( 2o ⊆ 𝑁 → ¬ 𝑁 = 1o ) |
29 |
28
|
intnanrd |
⊢ ( 2o ⊆ 𝑁 → ¬ ( 𝑁 = 1o ∧ 𝑋 ∈ 𝑈 ) ) |
30 |
29
|
iffalsed |
⊢ ( 2o ⊆ 𝑁 → if ( ( 𝑁 = 1o ∧ 𝑋 ∈ 𝑈 ) , ∅ , if ( 𝑋 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 , 〈 𝑁 , 𝑋 〉 ) ) = if ( 𝑋 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 , 〈 𝑁 , 𝑋 〉 ) ) |
31 |
|
iftrue |
⊢ ( 𝑋 ∈ ( V × 𝑈 ) → if ( 𝑋 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 , 〈 𝑁 , 𝑋 〉 ) = 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 ) |
32 |
30 31
|
sylan9eq |
⊢ ( ( 2o ⊆ 𝑁 ∧ 𝑋 ∈ ( V × 𝑈 ) ) → if ( ( 𝑁 = 1o ∧ 𝑋 ∈ 𝑈 ) , ∅ , if ( 𝑋 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 , 〈 𝑁 , 𝑋 〉 ) ) = 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 ) |
33 |
15 32
|
sylan9eqr |
⊢ ( ( ( 2o ⊆ 𝑁 ∧ 𝑋 ∈ ( V × 𝑈 ) ) ∧ ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) ) → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 ) |
34 |
33
|
adantlll |
⊢ ( ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑋 ∈ ( V × 𝑈 ) ) ∧ ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) ) → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 ) |
35 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑋 ∈ ( V × 𝑈 ) ) → 𝑁 ∈ ω ) |
36 |
|
elex |
⊢ ( 𝑋 ∈ ( V × 𝑈 ) → 𝑋 ∈ V ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑋 ∈ ( V × 𝑈 ) ) → 𝑋 ∈ V ) |
38 |
|
opex |
⊢ 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 ∈ V |
39 |
38
|
a1i |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑋 ∈ ( V × 𝑈 ) ) → 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 ∈ V ) |
40 |
2 34 35 37 39
|
ovmpod |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑋 ∈ ( V × 𝑈 ) ) → ( 𝑁 𝐹 𝑋 ) = 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 ) |
41 |
|
df-ov |
⊢ ( 𝑁 𝐹 𝑋 ) = ( 𝐹 ‘ 〈 𝑁 , 𝑋 〉 ) |
42 |
40 41
|
eqtr3di |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑋 ∈ ( V × 𝑈 ) ) → 〈 ∪ 𝑁 , ( 1st ‘ 𝑋 ) 〉 = ( 𝐹 ‘ 〈 𝑁 , 𝑋 〉 ) ) |