| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpreclem3.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  →  𝐹  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  =  1o  ↔  𝑁  =  1o ) ) | 
						
							| 4 |  | eleq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∈  𝑈  ↔  𝑋  ∈  𝑈 ) ) | 
						
							| 5 | 3 4 | bi2anan9 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 )  ↔  ( 𝑁  =  1o  ∧  𝑋  ∈  𝑈 ) ) ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∈  ( V  ×  𝑈 )  ↔  𝑋  ∈  ( V  ×  𝑈 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  ( 𝑥  ∈  ( V  ×  𝑈 )  ↔  𝑋  ∈  ( V  ×  𝑈 ) ) ) | 
						
							| 8 |  | unieq | ⊢ ( 𝑛  =  𝑁  →  ∪  𝑛  =  ∪  𝑁 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  ∪  𝑛  =  ∪  𝑁 ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑋 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑋 ) ) | 
						
							| 12 | 9 11 | opeq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉  =  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ) | 
						
							| 13 |  | opeq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  〈 𝑛 ,  𝑥 〉  =  〈 𝑁 ,  𝑋 〉 ) | 
						
							| 14 | 7 12 13 | ifbieq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 )  =  if ( 𝑋  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ,  〈 𝑁 ,  𝑋 〉 ) ) | 
						
							| 15 | 5 14 | ifbieq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  if ( ( 𝑁  =  1o  ∧  𝑋  ∈  𝑈 ) ,  ∅ ,  if ( 𝑋  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ,  〈 𝑁 ,  𝑋 〉 ) ) ) | 
						
							| 16 |  | sssucid | ⊢ 1o  ⊆  suc  1o | 
						
							| 17 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 18 | 16 17 | sseqtrri | ⊢ 1o  ⊆  2o | 
						
							| 19 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 20 | 17 19 | sucneqoni | ⊢ 2o  ≠  1o | 
						
							| 21 | 20 | necomi | ⊢ 1o  ≠  2o | 
						
							| 22 |  | df-pss | ⊢ ( 1o  ⊊  2o  ↔  ( 1o  ⊆  2o  ∧  1o  ≠  2o ) ) | 
						
							| 23 | 18 21 22 | mpbir2an | ⊢ 1o  ⊊  2o | 
						
							| 24 |  | ssnpss | ⊢ ( 2o  ⊆  1o  →  ¬  1o  ⊊  2o ) | 
						
							| 25 | 23 24 | mt2 | ⊢ ¬  2o  ⊆  1o | 
						
							| 26 |  | sseq2 | ⊢ ( 𝑁  =  1o  →  ( 2o  ⊆  𝑁  ↔  2o  ⊆  1o ) ) | 
						
							| 27 | 25 26 | mtbiri | ⊢ ( 𝑁  =  1o  →  ¬  2o  ⊆  𝑁 ) | 
						
							| 28 | 27 | con2i | ⊢ ( 2o  ⊆  𝑁  →  ¬  𝑁  =  1o ) | 
						
							| 29 | 28 | intnanrd | ⊢ ( 2o  ⊆  𝑁  →  ¬  ( 𝑁  =  1o  ∧  𝑋  ∈  𝑈 ) ) | 
						
							| 30 | 29 | iffalsed | ⊢ ( 2o  ⊆  𝑁  →  if ( ( 𝑁  =  1o  ∧  𝑋  ∈  𝑈 ) ,  ∅ ,  if ( 𝑋  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ,  〈 𝑁 ,  𝑋 〉 ) )  =  if ( 𝑋  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ,  〈 𝑁 ,  𝑋 〉 ) ) | 
						
							| 31 |  | iftrue | ⊢ ( 𝑋  ∈  ( V  ×  𝑈 )  →  if ( 𝑋  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ,  〈 𝑁 ,  𝑋 〉 )  =  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ) | 
						
							| 32 | 30 31 | sylan9eq | ⊢ ( ( 2o  ⊆  𝑁  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  →  if ( ( 𝑁  =  1o  ∧  𝑋  ∈  𝑈 ) ,  ∅ ,  if ( 𝑋  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ,  〈 𝑁 ,  𝑋 〉 ) )  =  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ) | 
						
							| 33 | 15 32 | sylan9eqr | ⊢ ( ( ( 2o  ⊆  𝑁  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  ∧  ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 ) )  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ) | 
						
							| 34 | 33 | adantlll | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  ∧  ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 ) )  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ) | 
						
							| 35 |  | simpll | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  →  𝑁  ∈  ω ) | 
						
							| 36 |  | elex | ⊢ ( 𝑋  ∈  ( V  ×  𝑈 )  →  𝑋  ∈  V ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  →  𝑋  ∈  V ) | 
						
							| 38 |  | opex | ⊢ 〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉  ∈  V | 
						
							| 39 | 38 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  →  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉  ∈  V ) | 
						
							| 40 | 2 34 35 37 39 | ovmpod | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  →  ( 𝑁 𝐹 𝑋 )  =  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉 ) | 
						
							| 41 |  | df-ov | ⊢ ( 𝑁 𝐹 𝑋 )  =  ( 𝐹 ‘ 〈 𝑁 ,  𝑋 〉 ) | 
						
							| 42 | 40 41 | eqtr3di | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑋  ∈  ( V  ×  𝑈 ) )  →  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑋 ) 〉  =  ( 𝐹 ‘ 〈 𝑁 ,  𝑋 〉 ) ) |