| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpreclem3.1 |  |-  F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 2 | 1 | a1i |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ) | 
						
							| 3 |  | eqeq1 |  |-  ( n = N -> ( n = 1o <-> N = 1o ) ) | 
						
							| 4 |  | eleq1 |  |-  ( x = X -> ( x e. U <-> X e. U ) ) | 
						
							| 5 | 3 4 | bi2anan9 |  |-  ( ( n = N /\ x = X ) -> ( ( n = 1o /\ x e. U ) <-> ( N = 1o /\ X e. U ) ) ) | 
						
							| 6 |  | eleq1 |  |-  ( x = X -> ( x e. ( _V X. U ) <-> X e. ( _V X. U ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( n = N /\ x = X ) -> ( x e. ( _V X. U ) <-> X e. ( _V X. U ) ) ) | 
						
							| 8 |  | unieq |  |-  ( n = N -> U. n = U. N ) | 
						
							| 9 | 8 | adantr |  |-  ( ( n = N /\ x = X ) -> U. n = U. N ) | 
						
							| 10 |  | fveq2 |  |-  ( x = X -> ( 1st ` x ) = ( 1st ` X ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( n = N /\ x = X ) -> ( 1st ` x ) = ( 1st ` X ) ) | 
						
							| 12 | 9 11 | opeq12d |  |-  ( ( n = N /\ x = X ) -> <. U. n , ( 1st ` x ) >. = <. U. N , ( 1st ` X ) >. ) | 
						
							| 13 |  | opeq12 |  |-  ( ( n = N /\ x = X ) -> <. n , x >. = <. N , X >. ) | 
						
							| 14 | 7 12 13 | ifbieq12d |  |-  ( ( n = N /\ x = X ) -> if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) | 
						
							| 15 | 5 14 | ifbieq2d |  |-  ( ( n = N /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( ( N = 1o /\ X e. U ) , (/) , if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) ) | 
						
							| 16 |  | sssucid |  |-  1o C_ suc 1o | 
						
							| 17 |  | df-2o |  |-  2o = suc 1o | 
						
							| 18 | 16 17 | sseqtrri |  |-  1o C_ 2o | 
						
							| 19 |  | 1on |  |-  1o e. On | 
						
							| 20 | 17 19 | sucneqoni |  |-  2o =/= 1o | 
						
							| 21 | 20 | necomi |  |-  1o =/= 2o | 
						
							| 22 |  | df-pss |  |-  ( 1o C. 2o <-> ( 1o C_ 2o /\ 1o =/= 2o ) ) | 
						
							| 23 | 18 21 22 | mpbir2an |  |-  1o C. 2o | 
						
							| 24 |  | ssnpss |  |-  ( 2o C_ 1o -> -. 1o C. 2o ) | 
						
							| 25 | 23 24 | mt2 |  |-  -. 2o C_ 1o | 
						
							| 26 |  | sseq2 |  |-  ( N = 1o -> ( 2o C_ N <-> 2o C_ 1o ) ) | 
						
							| 27 | 25 26 | mtbiri |  |-  ( N = 1o -> -. 2o C_ N ) | 
						
							| 28 | 27 | con2i |  |-  ( 2o C_ N -> -. N = 1o ) | 
						
							| 29 | 28 | intnanrd |  |-  ( 2o C_ N -> -. ( N = 1o /\ X e. U ) ) | 
						
							| 30 | 29 | iffalsed |  |-  ( 2o C_ N -> if ( ( N = 1o /\ X e. U ) , (/) , if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) = if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) | 
						
							| 31 |  | iftrue |  |-  ( X e. ( _V X. U ) -> if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) = <. U. N , ( 1st ` X ) >. ) | 
						
							| 32 | 30 31 | sylan9eq |  |-  ( ( 2o C_ N /\ X e. ( _V X. U ) ) -> if ( ( N = 1o /\ X e. U ) , (/) , if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) = <. U. N , ( 1st ` X ) >. ) | 
						
							| 33 | 15 32 | sylan9eqr |  |-  ( ( ( 2o C_ N /\ X e. ( _V X. U ) ) /\ ( n = N /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = <. U. N , ( 1st ` X ) >. ) | 
						
							| 34 | 33 | adantlll |  |-  ( ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) /\ ( n = N /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = <. U. N , ( 1st ` X ) >. ) | 
						
							| 35 |  | simpll |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> N e. _om ) | 
						
							| 36 |  | elex |  |-  ( X e. ( _V X. U ) -> X e. _V ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> X e. _V ) | 
						
							| 38 |  | opex |  |-  <. U. N , ( 1st ` X ) >. e. _V | 
						
							| 39 | 38 | a1i |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> <. U. N , ( 1st ` X ) >. e. _V ) | 
						
							| 40 | 2 34 35 37 39 | ovmpod |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> ( N F X ) = <. U. N , ( 1st ` X ) >. ) | 
						
							| 41 |  | df-ov |  |-  ( N F X ) = ( F ` <. N , X >. ) | 
						
							| 42 | 40 41 | eqtr3di |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> <. U. N , ( 1st ` X ) >. = ( F ` <. N , X >. ) ) |