Step |
Hyp |
Ref |
Expression |
1 |
|
finxpreclem3.1 |
|- F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
2 |
1
|
a1i |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ) |
3 |
|
eqeq1 |
|- ( n = N -> ( n = 1o <-> N = 1o ) ) |
4 |
|
eleq1 |
|- ( x = X -> ( x e. U <-> X e. U ) ) |
5 |
3 4
|
bi2anan9 |
|- ( ( n = N /\ x = X ) -> ( ( n = 1o /\ x e. U ) <-> ( N = 1o /\ X e. U ) ) ) |
6 |
|
eleq1 |
|- ( x = X -> ( x e. ( _V X. U ) <-> X e. ( _V X. U ) ) ) |
7 |
6
|
adantl |
|- ( ( n = N /\ x = X ) -> ( x e. ( _V X. U ) <-> X e. ( _V X. U ) ) ) |
8 |
|
unieq |
|- ( n = N -> U. n = U. N ) |
9 |
8
|
adantr |
|- ( ( n = N /\ x = X ) -> U. n = U. N ) |
10 |
|
fveq2 |
|- ( x = X -> ( 1st ` x ) = ( 1st ` X ) ) |
11 |
10
|
adantl |
|- ( ( n = N /\ x = X ) -> ( 1st ` x ) = ( 1st ` X ) ) |
12 |
9 11
|
opeq12d |
|- ( ( n = N /\ x = X ) -> <. U. n , ( 1st ` x ) >. = <. U. N , ( 1st ` X ) >. ) |
13 |
|
opeq12 |
|- ( ( n = N /\ x = X ) -> <. n , x >. = <. N , X >. ) |
14 |
7 12 13
|
ifbieq12d |
|- ( ( n = N /\ x = X ) -> if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) |
15 |
5 14
|
ifbieq2d |
|- ( ( n = N /\ x = X ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( ( N = 1o /\ X e. U ) , (/) , if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) ) |
16 |
|
sssucid |
|- 1o C_ suc 1o |
17 |
|
df-2o |
|- 2o = suc 1o |
18 |
16 17
|
sseqtrri |
|- 1o C_ 2o |
19 |
|
1on |
|- 1o e. On |
20 |
17 19
|
sucneqoni |
|- 2o =/= 1o |
21 |
20
|
necomi |
|- 1o =/= 2o |
22 |
|
df-pss |
|- ( 1o C. 2o <-> ( 1o C_ 2o /\ 1o =/= 2o ) ) |
23 |
18 21 22
|
mpbir2an |
|- 1o C. 2o |
24 |
|
ssnpss |
|- ( 2o C_ 1o -> -. 1o C. 2o ) |
25 |
23 24
|
mt2 |
|- -. 2o C_ 1o |
26 |
|
sseq2 |
|- ( N = 1o -> ( 2o C_ N <-> 2o C_ 1o ) ) |
27 |
25 26
|
mtbiri |
|- ( N = 1o -> -. 2o C_ N ) |
28 |
27
|
con2i |
|- ( 2o C_ N -> -. N = 1o ) |
29 |
28
|
intnanrd |
|- ( 2o C_ N -> -. ( N = 1o /\ X e. U ) ) |
30 |
29
|
iffalsed |
|- ( 2o C_ N -> if ( ( N = 1o /\ X e. U ) , (/) , if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) = if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) |
31 |
|
iftrue |
|- ( X e. ( _V X. U ) -> if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) = <. U. N , ( 1st ` X ) >. ) |
32 |
30 31
|
sylan9eq |
|- ( ( 2o C_ N /\ X e. ( _V X. U ) ) -> if ( ( N = 1o /\ X e. U ) , (/) , if ( X e. ( _V X. U ) , <. U. N , ( 1st ` X ) >. , <. N , X >. ) ) = <. U. N , ( 1st ` X ) >. ) |
33 |
15 32
|
sylan9eqr |
|- ( ( ( 2o C_ N /\ X e. ( _V X. U ) ) /\ ( n = N /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = <. U. N , ( 1st ` X ) >. ) |
34 |
33
|
adantlll |
|- ( ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) /\ ( n = N /\ x = X ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = <. U. N , ( 1st ` X ) >. ) |
35 |
|
simpll |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> N e. _om ) |
36 |
|
elex |
|- ( X e. ( _V X. U ) -> X e. _V ) |
37 |
36
|
adantl |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> X e. _V ) |
38 |
|
opex |
|- <. U. N , ( 1st ` X ) >. e. _V |
39 |
38
|
a1i |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> <. U. N , ( 1st ` X ) >. e. _V ) |
40 |
2 34 35 37 39
|
ovmpod |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> ( N F X ) = <. U. N , ( 1st ` X ) >. ) |
41 |
|
df-ov |
|- ( N F X ) = ( F ` <. N , X >. ) |
42 |
40 41
|
eqtr3di |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ X e. ( _V X. U ) ) -> <. U. N , ( 1st ` X ) >. = ( F ` <. N , X >. ) ) |