| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpreclem4.1 |  |-  F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 2 |  | 2onn |  |-  2o e. _om | 
						
							| 3 |  | nnon |  |-  ( N e. _om -> N e. On ) | 
						
							| 4 |  | 2on |  |-  2o e. On | 
						
							| 5 |  | oawordeu |  |-  ( ( ( 2o e. On /\ N e. On ) /\ 2o C_ N ) -> E! o e. On ( 2o +o o ) = N ) | 
						
							| 6 | 4 5 | mpanl1 |  |-  ( ( N e. On /\ 2o C_ N ) -> E! o e. On ( 2o +o o ) = N ) | 
						
							| 7 |  | riotasbc |  |-  ( E! o e. On ( 2o +o o ) = N -> [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( N e. On /\ 2o C_ N ) -> [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N ) | 
						
							| 9 |  | riotaex |  |-  ( iota_ o e. On ( 2o +o o ) = N ) e. _V | 
						
							| 10 |  | sbceq1g |  |-  ( ( iota_ o e. On ( 2o +o o ) = N ) e. _V -> ( [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N <-> [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = N ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N <-> [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = N ) | 
						
							| 12 |  | csbov2g |  |-  ( ( iota_ o e. On ( 2o +o o ) = N ) e. _V -> [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = ( 2o +o [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ o ) ) | 
						
							| 13 | 9 12 | ax-mp |  |-  [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = ( 2o +o [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ o ) | 
						
							| 14 | 9 | csbvargi |  |-  [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ o = ( iota_ o e. On ( 2o +o o ) = N ) | 
						
							| 15 | 14 | oveq2i |  |-  ( 2o +o [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ o ) = ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) | 
						
							| 16 | 13 15 | eqtri |  |-  [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) | 
						
							| 17 | 16 | eqeq1i |  |-  ( [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = N <-> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = N ) | 
						
							| 18 | 11 17 | bitri |  |-  ( [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N <-> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = N ) | 
						
							| 19 | 8 18 | sylib |  |-  ( ( N e. On /\ 2o C_ N ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = N ) | 
						
							| 20 | 3 19 | sylan |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = N ) | 
						
							| 21 |  | simpl |  |-  ( ( N e. _om /\ 2o C_ N ) -> N e. _om ) | 
						
							| 22 | 20 21 | eqeltrd |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om ) | 
						
							| 23 |  | riotacl |  |-  ( E! o e. On ( 2o +o o ) = N -> ( iota_ o e. On ( 2o +o o ) = N ) e. On ) | 
						
							| 24 |  | riotaund |  |-  ( -. E! o e. On ( 2o +o o ) = N -> ( iota_ o e. On ( 2o +o o ) = N ) = (/) ) | 
						
							| 25 |  | 0elon |  |-  (/) e. On | 
						
							| 26 | 24 25 | eqeltrdi |  |-  ( -. E! o e. On ( 2o +o o ) = N -> ( iota_ o e. On ( 2o +o o ) = N ) e. On ) | 
						
							| 27 | 23 26 | pm2.61i |  |-  ( iota_ o e. On ( 2o +o o ) = N ) e. On | 
						
							| 28 |  | nnarcl |  |-  ( ( 2o e. On /\ ( iota_ o e. On ( 2o +o o ) = N ) e. On ) -> ( ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om <-> ( 2o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) ) ) | 
						
							| 29 | 4 28 | mpan |  |-  ( ( iota_ o e. On ( 2o +o o ) = N ) e. On -> ( ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om <-> ( 2o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) ) ) | 
						
							| 30 | 2 | biantrur |  |-  ( ( iota_ o e. On ( 2o +o o ) = N ) e. _om <-> ( 2o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) ) | 
						
							| 31 | 29 30 | bitr4di |  |-  ( ( iota_ o e. On ( 2o +o o ) = N ) e. On -> ( ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om <-> ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) ) | 
						
							| 32 | 27 31 | ax-mp |  |-  ( ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om <-> ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) | 
						
							| 33 | 22 32 | sylib |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) | 
						
							| 34 |  | nnacom |  |-  ( ( 2o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = ( ( iota_ o e. On ( 2o +o o ) = N ) +o 2o ) ) | 
						
							| 35 | 2 33 34 | sylancr |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = ( ( iota_ o e. On ( 2o +o o ) = N ) +o 2o ) ) | 
						
							| 36 |  | df-2o |  |-  2o = suc 1o | 
						
							| 37 | 36 | oveq2i |  |-  ( ( iota_ o e. On ( 2o +o o ) = N ) +o 2o ) = ( ( iota_ o e. On ( 2o +o o ) = N ) +o suc 1o ) | 
						
							| 38 |  | 1onn |  |-  1o e. _om | 
						
							| 39 |  | nnasuc |  |-  ( ( ( iota_ o e. On ( 2o +o o ) = N ) e. _om /\ 1o e. _om ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o suc 1o ) = suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) ) | 
						
							| 40 | 33 38 39 | sylancl |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o suc 1o ) = suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) ) | 
						
							| 41 | 37 40 | eqtrid |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o 2o ) = suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) ) | 
						
							| 42 | 35 20 41 | 3eqtr3d |  |-  ( ( N e. _om /\ 2o C_ N ) -> N = suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) ) | 
						
							| 43 | 3 | adantr |  |-  ( ( N e. _om /\ 2o C_ N ) -> N e. On ) | 
						
							| 44 |  | sucidg |  |-  ( 1o e. _om -> 1o e. suc 1o ) | 
						
							| 45 | 38 44 | ax-mp |  |-  1o e. suc 1o | 
						
							| 46 | 45 36 | eleqtrri |  |-  1o e. 2o | 
						
							| 47 |  | ssel |  |-  ( 2o C_ N -> ( 1o e. 2o -> 1o e. N ) ) | 
						
							| 48 | 46 47 | mpi |  |-  ( 2o C_ N -> 1o e. N ) | 
						
							| 49 | 48 | ne0d |  |-  ( 2o C_ N -> N =/= (/) ) | 
						
							| 50 | 49 | adantl |  |-  ( ( N e. _om /\ 2o C_ N ) -> N =/= (/) ) | 
						
							| 51 |  | nnlim |  |-  ( N e. _om -> -. Lim N ) | 
						
							| 52 | 51 | adantr |  |-  ( ( N e. _om /\ 2o C_ N ) -> -. Lim N ) | 
						
							| 53 |  | onsucuni3 |  |-  ( ( N e. On /\ N =/= (/) /\ -. Lim N ) -> N = suc U. N ) | 
						
							| 54 | 43 50 52 53 | syl3anc |  |-  ( ( N e. _om /\ 2o C_ N ) -> N = suc U. N ) | 
						
							| 55 |  | nnacom |  |-  ( ( ( iota_ o e. On ( 2o +o o ) = N ) e. _om /\ 1o e. _om ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) | 
						
							| 56 | 33 38 55 | sylancl |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) | 
						
							| 57 |  | suceq |  |-  ( ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) -> suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( N e. _om /\ 2o C_ N ) -> suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) | 
						
							| 59 | 42 54 58 | 3eqtr3d |  |-  ( ( N e. _om /\ 2o C_ N ) -> suc U. N = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) | 
						
							| 60 |  | ordom |  |-  Ord _om | 
						
							| 61 |  | ordelss |  |-  ( ( Ord _om /\ N e. _om ) -> N C_ _om ) | 
						
							| 62 | 60 61 | mpan |  |-  ( N e. _om -> N C_ _om ) | 
						
							| 63 |  | nnfi |  |-  ( N e. _om -> N e. Fin ) | 
						
							| 64 |  | nnunifi |  |-  ( ( N C_ _om /\ N e. Fin ) -> U. N e. _om ) | 
						
							| 65 | 62 63 64 | syl2anc |  |-  ( N e. _om -> U. N e. _om ) | 
						
							| 66 | 65 | adantr |  |-  ( ( N e. _om /\ 2o C_ N ) -> U. N e. _om ) | 
						
							| 67 |  | nnacl |  |-  ( ( 1o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) -> ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om ) | 
						
							| 68 | 38 33 67 | sylancr |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om ) | 
						
							| 69 |  | peano4 |  |-  ( ( U. N e. _om /\ ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om ) -> ( suc U. N = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) <-> U. N = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) | 
						
							| 70 | 66 68 69 | syl2anc |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( suc U. N = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) <-> U. N = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) | 
						
							| 71 | 59 70 | mpbid |  |-  ( ( N e. _om /\ 2o C_ N ) -> U. N = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) | 
						
							| 72 | 71 | fveq2d |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` U. N ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` U. N ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) | 
						
							| 74 | 33 | adantr |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) | 
						
							| 75 |  | df-1o |  |-  1o = suc (/) | 
						
							| 76 | 75 | fveq2i |  |-  ( rec ( F , <. N , y >. ) ` 1o ) = ( rec ( F , <. N , y >. ) ` suc (/) ) | 
						
							| 77 |  | rdgsuc |  |-  ( (/) e. On -> ( rec ( F , <. N , y >. ) ` suc (/) ) = ( F ` ( rec ( F , <. N , y >. ) ` (/) ) ) ) | 
						
							| 78 | 25 77 | ax-mp |  |-  ( rec ( F , <. N , y >. ) ` suc (/) ) = ( F ` ( rec ( F , <. N , y >. ) ` (/) ) ) | 
						
							| 79 |  | opex |  |-  <. N , y >. e. _V | 
						
							| 80 | 79 | rdg0 |  |-  ( rec ( F , <. N , y >. ) ` (/) ) = <. N , y >. | 
						
							| 81 | 80 | fveq2i |  |-  ( F ` ( rec ( F , <. N , y >. ) ` (/) ) ) = ( F ` <. N , y >. ) | 
						
							| 82 | 76 78 81 | 3eqtri |  |-  ( rec ( F , <. N , y >. ) ` 1o ) = ( F ` <. N , y >. ) | 
						
							| 83 | 1 | finxpreclem3 |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> <. U. N , ( 1st ` y ) >. = ( F ` <. N , y >. ) ) | 
						
							| 84 | 82 83 | eqtr4id |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` 1o ) = <. U. N , ( 1st ` y ) >. ) | 
						
							| 85 | 84 | fveq2d |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( F ` ( rec ( F , <. N , y >. ) ` 1o ) ) = ( F ` <. U. N , ( 1st ` y ) >. ) ) | 
						
							| 86 |  | 2on0 |  |-  2o =/= (/) | 
						
							| 87 |  | nnlim |  |-  ( 2o e. _om -> -. Lim 2o ) | 
						
							| 88 | 2 87 | ax-mp |  |-  -. Lim 2o | 
						
							| 89 |  | rdgsucuni |  |-  ( ( 2o e. On /\ 2o =/= (/) /\ -. Lim 2o ) -> ( rec ( F , <. N , y >. ) ` 2o ) = ( F ` ( rec ( F , <. N , y >. ) ` U. 2o ) ) ) | 
						
							| 90 | 4 86 88 89 | mp3an |  |-  ( rec ( F , <. N , y >. ) ` 2o ) = ( F ` ( rec ( F , <. N , y >. ) ` U. 2o ) ) | 
						
							| 91 |  | 1oequni2o |  |-  1o = U. 2o | 
						
							| 92 | 91 | fveq2i |  |-  ( rec ( F , <. N , y >. ) ` 1o ) = ( rec ( F , <. N , y >. ) ` U. 2o ) | 
						
							| 93 | 92 | fveq2i |  |-  ( F ` ( rec ( F , <. N , y >. ) ` 1o ) ) = ( F ` ( rec ( F , <. N , y >. ) ` U. 2o ) ) | 
						
							| 94 | 90 93 | eqtr4i |  |-  ( rec ( F , <. N , y >. ) ` 2o ) = ( F ` ( rec ( F , <. N , y >. ) ` 1o ) ) | 
						
							| 95 | 75 | fveq2i |  |-  ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` suc (/) ) | 
						
							| 96 |  | rdgsuc |  |-  ( (/) e. On -> ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` suc (/) ) = ( F ` ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` (/) ) ) ) | 
						
							| 97 | 25 96 | ax-mp |  |-  ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` suc (/) ) = ( F ` ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` (/) ) ) | 
						
							| 98 |  | opex |  |-  <. U. N , ( 1st ` y ) >. e. _V | 
						
							| 99 | 98 | rdg0 |  |-  ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` (/) ) = <. U. N , ( 1st ` y ) >. | 
						
							| 100 | 99 | fveq2i |  |-  ( F ` ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` (/) ) ) = ( F ` <. U. N , ( 1st ` y ) >. ) | 
						
							| 101 | 95 97 100 | 3eqtri |  |-  ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) = ( F ` <. U. N , ( 1st ` y ) >. ) | 
						
							| 102 | 85 94 101 | 3eqtr4g |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` 2o ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) ) | 
						
							| 103 |  | 1on |  |-  1o e. On | 
						
							| 104 |  | rdgeqoa |  |-  ( ( 2o e. On /\ 1o e. On /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) -> ( ( rec ( F , <. N , y >. ) ` 2o ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) ) | 
						
							| 105 | 4 103 104 | mp3an12 |  |-  ( ( iota_ o e. On ( 2o +o o ) = N ) e. _om -> ( ( rec ( F , <. N , y >. ) ` 2o ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) ) | 
						
							| 106 | 74 102 105 | sylc |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) | 
						
							| 107 | 20 | fveq2d |  |-  ( ( N e. _om /\ 2o C_ N ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. N , y >. ) ` N ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. N , y >. ) ` N ) ) | 
						
							| 109 | 73 106 108 | 3eqtr2rd |  |-  ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` N ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` U. N ) ) |