Step |
Hyp |
Ref |
Expression |
1 |
|
finxpreclem4.1 |
|- F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
2 |
|
2onn |
|- 2o e. _om |
3 |
|
nnon |
|- ( N e. _om -> N e. On ) |
4 |
|
2on |
|- 2o e. On |
5 |
|
oawordeu |
|- ( ( ( 2o e. On /\ N e. On ) /\ 2o C_ N ) -> E! o e. On ( 2o +o o ) = N ) |
6 |
4 5
|
mpanl1 |
|- ( ( N e. On /\ 2o C_ N ) -> E! o e. On ( 2o +o o ) = N ) |
7 |
|
riotasbc |
|- ( E! o e. On ( 2o +o o ) = N -> [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N ) |
8 |
6 7
|
syl |
|- ( ( N e. On /\ 2o C_ N ) -> [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N ) |
9 |
|
riotaex |
|- ( iota_ o e. On ( 2o +o o ) = N ) e. _V |
10 |
|
sbceq1g |
|- ( ( iota_ o e. On ( 2o +o o ) = N ) e. _V -> ( [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N <-> [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = N ) ) |
11 |
9 10
|
ax-mp |
|- ( [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N <-> [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = N ) |
12 |
|
csbov2g |
|- ( ( iota_ o e. On ( 2o +o o ) = N ) e. _V -> [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = ( 2o +o [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ o ) ) |
13 |
9 12
|
ax-mp |
|- [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = ( 2o +o [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ o ) |
14 |
9
|
csbvargi |
|- [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ o = ( iota_ o e. On ( 2o +o o ) = N ) |
15 |
14
|
oveq2i |
|- ( 2o +o [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ o ) = ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) |
16 |
13 15
|
eqtri |
|- [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) |
17 |
16
|
eqeq1i |
|- ( [_ ( iota_ o e. On ( 2o +o o ) = N ) / o ]_ ( 2o +o o ) = N <-> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = N ) |
18 |
11 17
|
bitri |
|- ( [. ( iota_ o e. On ( 2o +o o ) = N ) / o ]. ( 2o +o o ) = N <-> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = N ) |
19 |
8 18
|
sylib |
|- ( ( N e. On /\ 2o C_ N ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = N ) |
20 |
3 19
|
sylan |
|- ( ( N e. _om /\ 2o C_ N ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = N ) |
21 |
|
simpl |
|- ( ( N e. _om /\ 2o C_ N ) -> N e. _om ) |
22 |
20 21
|
eqeltrd |
|- ( ( N e. _om /\ 2o C_ N ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om ) |
23 |
|
riotacl |
|- ( E! o e. On ( 2o +o o ) = N -> ( iota_ o e. On ( 2o +o o ) = N ) e. On ) |
24 |
|
riotaund |
|- ( -. E! o e. On ( 2o +o o ) = N -> ( iota_ o e. On ( 2o +o o ) = N ) = (/) ) |
25 |
|
0elon |
|- (/) e. On |
26 |
24 25
|
eqeltrdi |
|- ( -. E! o e. On ( 2o +o o ) = N -> ( iota_ o e. On ( 2o +o o ) = N ) e. On ) |
27 |
23 26
|
pm2.61i |
|- ( iota_ o e. On ( 2o +o o ) = N ) e. On |
28 |
|
nnarcl |
|- ( ( 2o e. On /\ ( iota_ o e. On ( 2o +o o ) = N ) e. On ) -> ( ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om <-> ( 2o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) ) ) |
29 |
4 28
|
mpan |
|- ( ( iota_ o e. On ( 2o +o o ) = N ) e. On -> ( ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om <-> ( 2o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) ) ) |
30 |
2
|
biantrur |
|- ( ( iota_ o e. On ( 2o +o o ) = N ) e. _om <-> ( 2o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) ) |
31 |
29 30
|
bitr4di |
|- ( ( iota_ o e. On ( 2o +o o ) = N ) e. On -> ( ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om <-> ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) ) |
32 |
27 31
|
ax-mp |
|- ( ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om <-> ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) |
33 |
22 32
|
sylib |
|- ( ( N e. _om /\ 2o C_ N ) -> ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) |
34 |
|
nnacom |
|- ( ( 2o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = ( ( iota_ o e. On ( 2o +o o ) = N ) +o 2o ) ) |
35 |
2 33 34
|
sylancr |
|- ( ( N e. _om /\ 2o C_ N ) -> ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) = ( ( iota_ o e. On ( 2o +o o ) = N ) +o 2o ) ) |
36 |
|
df-2o |
|- 2o = suc 1o |
37 |
36
|
oveq2i |
|- ( ( iota_ o e. On ( 2o +o o ) = N ) +o 2o ) = ( ( iota_ o e. On ( 2o +o o ) = N ) +o suc 1o ) |
38 |
|
1onn |
|- 1o e. _om |
39 |
|
nnasuc |
|- ( ( ( iota_ o e. On ( 2o +o o ) = N ) e. _om /\ 1o e. _om ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o suc 1o ) = suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) ) |
40 |
33 38 39
|
sylancl |
|- ( ( N e. _om /\ 2o C_ N ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o suc 1o ) = suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) ) |
41 |
37 40
|
syl5eq |
|- ( ( N e. _om /\ 2o C_ N ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o 2o ) = suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) ) |
42 |
35 20 41
|
3eqtr3d |
|- ( ( N e. _om /\ 2o C_ N ) -> N = suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) ) |
43 |
3
|
adantr |
|- ( ( N e. _om /\ 2o C_ N ) -> N e. On ) |
44 |
|
sucidg |
|- ( 1o e. _om -> 1o e. suc 1o ) |
45 |
38 44
|
ax-mp |
|- 1o e. suc 1o |
46 |
45 36
|
eleqtrri |
|- 1o e. 2o |
47 |
|
ssel |
|- ( 2o C_ N -> ( 1o e. 2o -> 1o e. N ) ) |
48 |
46 47
|
mpi |
|- ( 2o C_ N -> 1o e. N ) |
49 |
48
|
ne0d |
|- ( 2o C_ N -> N =/= (/) ) |
50 |
49
|
adantl |
|- ( ( N e. _om /\ 2o C_ N ) -> N =/= (/) ) |
51 |
|
nnlim |
|- ( N e. _om -> -. Lim N ) |
52 |
51
|
adantr |
|- ( ( N e. _om /\ 2o C_ N ) -> -. Lim N ) |
53 |
|
onsucuni3 |
|- ( ( N e. On /\ N =/= (/) /\ -. Lim N ) -> N = suc U. N ) |
54 |
43 50 52 53
|
syl3anc |
|- ( ( N e. _om /\ 2o C_ N ) -> N = suc U. N ) |
55 |
|
nnacom |
|- ( ( ( iota_ o e. On ( 2o +o o ) = N ) e. _om /\ 1o e. _om ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) |
56 |
33 38 55
|
sylancl |
|- ( ( N e. _om /\ 2o C_ N ) -> ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) |
57 |
|
suceq |
|- ( ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) -> suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) |
58 |
56 57
|
syl |
|- ( ( N e. _om /\ 2o C_ N ) -> suc ( ( iota_ o e. On ( 2o +o o ) = N ) +o 1o ) = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) |
59 |
42 54 58
|
3eqtr3d |
|- ( ( N e. _om /\ 2o C_ N ) -> suc U. N = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) |
60 |
|
ordom |
|- Ord _om |
61 |
|
ordelss |
|- ( ( Ord _om /\ N e. _om ) -> N C_ _om ) |
62 |
60 61
|
mpan |
|- ( N e. _om -> N C_ _om ) |
63 |
|
nnfi |
|- ( N e. _om -> N e. Fin ) |
64 |
|
nnunifi |
|- ( ( N C_ _om /\ N e. Fin ) -> U. N e. _om ) |
65 |
62 63 64
|
syl2anc |
|- ( N e. _om -> U. N e. _om ) |
66 |
65
|
adantr |
|- ( ( N e. _om /\ 2o C_ N ) -> U. N e. _om ) |
67 |
|
nnacl |
|- ( ( 1o e. _om /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) -> ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om ) |
68 |
38 33 67
|
sylancr |
|- ( ( N e. _om /\ 2o C_ N ) -> ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om ) |
69 |
|
peano4 |
|- ( ( U. N e. _om /\ ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) e. _om ) -> ( suc U. N = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) <-> U. N = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) |
70 |
66 68 69
|
syl2anc |
|- ( ( N e. _om /\ 2o C_ N ) -> ( suc U. N = suc ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) <-> U. N = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) |
71 |
59 70
|
mpbid |
|- ( ( N e. _om /\ 2o C_ N ) -> U. N = ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) |
72 |
71
|
fveq2d |
|- ( ( N e. _om /\ 2o C_ N ) -> ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` U. N ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) |
73 |
72
|
adantr |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` U. N ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) |
74 |
33
|
adantr |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) |
75 |
|
df-1o |
|- 1o = suc (/) |
76 |
75
|
fveq2i |
|- ( rec ( F , <. N , y >. ) ` 1o ) = ( rec ( F , <. N , y >. ) ` suc (/) ) |
77 |
|
rdgsuc |
|- ( (/) e. On -> ( rec ( F , <. N , y >. ) ` suc (/) ) = ( F ` ( rec ( F , <. N , y >. ) ` (/) ) ) ) |
78 |
25 77
|
ax-mp |
|- ( rec ( F , <. N , y >. ) ` suc (/) ) = ( F ` ( rec ( F , <. N , y >. ) ` (/) ) ) |
79 |
|
opex |
|- <. N , y >. e. _V |
80 |
79
|
rdg0 |
|- ( rec ( F , <. N , y >. ) ` (/) ) = <. N , y >. |
81 |
80
|
fveq2i |
|- ( F ` ( rec ( F , <. N , y >. ) ` (/) ) ) = ( F ` <. N , y >. ) |
82 |
76 78 81
|
3eqtri |
|- ( rec ( F , <. N , y >. ) ` 1o ) = ( F ` <. N , y >. ) |
83 |
1
|
finxpreclem3 |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> <. U. N , ( 1st ` y ) >. = ( F ` <. N , y >. ) ) |
84 |
82 83
|
eqtr4id |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` 1o ) = <. U. N , ( 1st ` y ) >. ) |
85 |
84
|
fveq2d |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( F ` ( rec ( F , <. N , y >. ) ` 1o ) ) = ( F ` <. U. N , ( 1st ` y ) >. ) ) |
86 |
|
2on0 |
|- 2o =/= (/) |
87 |
|
nnlim |
|- ( 2o e. _om -> -. Lim 2o ) |
88 |
2 87
|
ax-mp |
|- -. Lim 2o |
89 |
|
rdgsucuni |
|- ( ( 2o e. On /\ 2o =/= (/) /\ -. Lim 2o ) -> ( rec ( F , <. N , y >. ) ` 2o ) = ( F ` ( rec ( F , <. N , y >. ) ` U. 2o ) ) ) |
90 |
4 86 88 89
|
mp3an |
|- ( rec ( F , <. N , y >. ) ` 2o ) = ( F ` ( rec ( F , <. N , y >. ) ` U. 2o ) ) |
91 |
|
1oequni2o |
|- 1o = U. 2o |
92 |
91
|
fveq2i |
|- ( rec ( F , <. N , y >. ) ` 1o ) = ( rec ( F , <. N , y >. ) ` U. 2o ) |
93 |
92
|
fveq2i |
|- ( F ` ( rec ( F , <. N , y >. ) ` 1o ) ) = ( F ` ( rec ( F , <. N , y >. ) ` U. 2o ) ) |
94 |
90 93
|
eqtr4i |
|- ( rec ( F , <. N , y >. ) ` 2o ) = ( F ` ( rec ( F , <. N , y >. ) ` 1o ) ) |
95 |
75
|
fveq2i |
|- ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` suc (/) ) |
96 |
|
rdgsuc |
|- ( (/) e. On -> ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` suc (/) ) = ( F ` ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` (/) ) ) ) |
97 |
25 96
|
ax-mp |
|- ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` suc (/) ) = ( F ` ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` (/) ) ) |
98 |
|
opex |
|- <. U. N , ( 1st ` y ) >. e. _V |
99 |
98
|
rdg0 |
|- ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` (/) ) = <. U. N , ( 1st ` y ) >. |
100 |
99
|
fveq2i |
|- ( F ` ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` (/) ) ) = ( F ` <. U. N , ( 1st ` y ) >. ) |
101 |
95 97 100
|
3eqtri |
|- ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) = ( F ` <. U. N , ( 1st ` y ) >. ) |
102 |
85 94 101
|
3eqtr4g |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` 2o ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) ) |
103 |
|
1on |
|- 1o e. On |
104 |
|
rdgeqoa |
|- ( ( 2o e. On /\ 1o e. On /\ ( iota_ o e. On ( 2o +o o ) = N ) e. _om ) -> ( ( rec ( F , <. N , y >. ) ` 2o ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) ) |
105 |
4 103 104
|
mp3an12 |
|- ( ( iota_ o e. On ( 2o +o o ) = N ) e. _om -> ( ( rec ( F , <. N , y >. ) ` 2o ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` 1o ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) ) |
106 |
74 102 105
|
sylc |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` ( 1o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) ) |
107 |
20
|
fveq2d |
|- ( ( N e. _om /\ 2o C_ N ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. N , y >. ) ` N ) ) |
108 |
107
|
adantr |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` ( 2o +o ( iota_ o e. On ( 2o +o o ) = N ) ) ) = ( rec ( F , <. N , y >. ) ` N ) ) |
109 |
73 106 108
|
3eqtr2rd |
|- ( ( ( N e. _om /\ 2o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. N , y >. ) ` N ) = ( rec ( F , <. U. N , ( 1st ` y ) >. ) ` U. N ) ) |