| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpreclem4.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 2 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 3 |  | nnon | ⊢ ( 𝑁  ∈  ω  →  𝑁  ∈  On ) | 
						
							| 4 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 5 |  | oawordeu | ⊢ ( ( ( 2o  ∈  On  ∧  𝑁  ∈  On )  ∧  2o  ⊆  𝑁 )  →  ∃! 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) | 
						
							| 6 | 4 5 | mpanl1 | ⊢ ( ( 𝑁  ∈  On  ∧  2o  ⊆  𝑁 )  →  ∃! 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) | 
						
							| 7 |  | riotasbc | ⊢ ( ∃! 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁  →  [ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ] ( 2o  +o  𝑜 )  =  𝑁 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝑁  ∈  On  ∧  2o  ⊆  𝑁 )  →  [ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ] ( 2o  +o  𝑜 )  =  𝑁 ) | 
						
							| 9 |  | riotaex | ⊢ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  V | 
						
							| 10 |  | sbceq1g | ⊢ ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  V  →  ( [ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ] ( 2o  +o  𝑜 )  =  𝑁  ↔  ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ ( 2o  +o  𝑜 )  =  𝑁 ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( [ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ] ( 2o  +o  𝑜 )  =  𝑁  ↔  ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ ( 2o  +o  𝑜 )  =  𝑁 ) | 
						
							| 12 |  | csbov2g | ⊢ ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  V  →  ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ ( 2o  +o  𝑜 )  =  ( 2o  +o  ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ 𝑜 ) ) | 
						
							| 13 | 9 12 | ax-mp | ⊢ ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ ( 2o  +o  𝑜 )  =  ( 2o  +o  ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ 𝑜 ) | 
						
							| 14 | 9 | csbvargi | ⊢ ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ 𝑜  =  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) | 
						
							| 15 | 14 | oveq2i | ⊢ ( 2o  +o  ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ 𝑜 )  =  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) | 
						
							| 16 | 13 15 | eqtri | ⊢ ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ ( 2o  +o  𝑜 )  =  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) | 
						
							| 17 | 16 | eqeq1i | ⊢ ( ⦋ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ⦌ ( 2o  +o  𝑜 )  =  𝑁  ↔  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  =  𝑁 ) | 
						
							| 18 | 11 17 | bitri | ⊢ ( [ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  /  𝑜 ] ( 2o  +o  𝑜 )  =  𝑁  ↔  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  =  𝑁 ) | 
						
							| 19 | 8 18 | sylib | ⊢ ( ( 𝑁  ∈  On  ∧  2o  ⊆  𝑁 )  →  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  =  𝑁 ) | 
						
							| 20 | 3 19 | sylan | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  =  𝑁 ) | 
						
							| 21 |  | simpl | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  𝑁  ∈  ω ) | 
						
							| 22 | 20 21 | eqeltrd | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ∈  ω ) | 
						
							| 23 |  | riotacl | ⊢ ( ∃! 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁  →  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  On ) | 
						
							| 24 |  | riotaund | ⊢ ( ¬  ∃! 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁  →  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  =  ∅ ) | 
						
							| 25 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 26 | 24 25 | eqeltrdi | ⊢ ( ¬  ∃! 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁  →  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  On ) | 
						
							| 27 | 23 26 | pm2.61i | ⊢ ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  On | 
						
							| 28 |  | nnarcl | ⊢ ( ( 2o  ∈  On  ∧  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  On )  →  ( ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ∈  ω  ↔  ( 2o  ∈  ω  ∧  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω ) ) ) | 
						
							| 29 | 4 28 | mpan | ⊢ ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  On  →  ( ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ∈  ω  ↔  ( 2o  ∈  ω  ∧  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω ) ) ) | 
						
							| 30 | 2 | biantrur | ⊢ ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω  ↔  ( 2o  ∈  ω  ∧  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω ) ) | 
						
							| 31 | 29 30 | bitr4di | ⊢ ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  On  →  ( ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ∈  ω  ↔  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω ) ) | 
						
							| 32 | 27 31 | ax-mp | ⊢ ( ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ∈  ω  ↔  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω ) | 
						
							| 33 | 22 32 | sylib | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω ) | 
						
							| 34 |  | nnacom | ⊢ ( ( 2o  ∈  ω  ∧  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω )  →  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  =  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  2o ) ) | 
						
							| 35 | 2 33 34 | sylancr | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  =  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  2o ) ) | 
						
							| 36 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 37 | 36 | oveq2i | ⊢ ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  2o )  =  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  suc  1o ) | 
						
							| 38 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 39 |  | nnasuc | ⊢ ( ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω  ∧  1o  ∈  ω )  →  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  suc  1o )  =  suc  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o ) ) | 
						
							| 40 | 33 38 39 | sylancl | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  suc  1o )  =  suc  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o ) ) | 
						
							| 41 | 37 40 | eqtrid | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  2o )  =  suc  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o ) ) | 
						
							| 42 | 35 20 41 | 3eqtr3d | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  𝑁  =  suc  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o ) ) | 
						
							| 43 | 3 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  𝑁  ∈  On ) | 
						
							| 44 |  | sucidg | ⊢ ( 1o  ∈  ω  →  1o  ∈  suc  1o ) | 
						
							| 45 | 38 44 | ax-mp | ⊢ 1o  ∈  suc  1o | 
						
							| 46 | 45 36 | eleqtrri | ⊢ 1o  ∈  2o | 
						
							| 47 |  | ssel | ⊢ ( 2o  ⊆  𝑁  →  ( 1o  ∈  2o  →  1o  ∈  𝑁 ) ) | 
						
							| 48 | 46 47 | mpi | ⊢ ( 2o  ⊆  𝑁  →  1o  ∈  𝑁 ) | 
						
							| 49 | 48 | ne0d | ⊢ ( 2o  ⊆  𝑁  →  𝑁  ≠  ∅ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  𝑁  ≠  ∅ ) | 
						
							| 51 |  | nnlim | ⊢ ( 𝑁  ∈  ω  →  ¬  Lim  𝑁 ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ¬  Lim  𝑁 ) | 
						
							| 53 |  | onsucuni3 | ⊢ ( ( 𝑁  ∈  On  ∧  𝑁  ≠  ∅  ∧  ¬  Lim  𝑁 )  →  𝑁  =  suc  ∪  𝑁 ) | 
						
							| 54 | 43 50 52 53 | syl3anc | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  𝑁  =  suc  ∪  𝑁 ) | 
						
							| 55 |  | nnacom | ⊢ ( ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω  ∧  1o  ∈  ω )  →  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o )  =  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) | 
						
							| 56 | 33 38 55 | sylancl | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o )  =  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) | 
						
							| 57 |  | suceq | ⊢ ( ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o )  =  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  →  suc  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o )  =  suc  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  suc  ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  +o  1o )  =  suc  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) | 
						
							| 59 | 42 54 58 | 3eqtr3d | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  suc  ∪  𝑁  =  suc  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) | 
						
							| 60 |  | ordom | ⊢ Ord  ω | 
						
							| 61 |  | ordelss | ⊢ ( ( Ord  ω  ∧  𝑁  ∈  ω )  →  𝑁  ⊆  ω ) | 
						
							| 62 | 60 61 | mpan | ⊢ ( 𝑁  ∈  ω  →  𝑁  ⊆  ω ) | 
						
							| 63 |  | nnfi | ⊢ ( 𝑁  ∈  ω  →  𝑁  ∈  Fin ) | 
						
							| 64 |  | nnunifi | ⊢ ( ( 𝑁  ⊆  ω  ∧  𝑁  ∈  Fin )  →  ∪  𝑁  ∈  ω ) | 
						
							| 65 | 62 63 64 | syl2anc | ⊢ ( 𝑁  ∈  ω  →  ∪  𝑁  ∈  ω ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ∪  𝑁  ∈  ω ) | 
						
							| 67 |  | nnacl | ⊢ ( ( 1o  ∈  ω  ∧  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω )  →  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ∈  ω ) | 
						
							| 68 | 38 33 67 | sylancr | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ∈  ω ) | 
						
							| 69 |  | peano4 | ⊢ ( ( ∪  𝑁  ∈  ω  ∧  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ∈  ω )  →  ( suc  ∪  𝑁  =  suc  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ↔  ∪  𝑁  =  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) ) | 
						
							| 70 | 66 68 69 | syl2anc | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( suc  ∪  𝑁  =  suc  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) )  ↔  ∪  𝑁  =  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) ) | 
						
							| 71 | 59 70 | mpbid | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ∪  𝑁  =  ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∪  𝑁 )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∪  𝑁 )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) ) | 
						
							| 74 | 33 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω ) | 
						
							| 75 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 76 | 75 | fveq2i | ⊢ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 1o )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ suc  ∅ ) | 
						
							| 77 |  | rdgsuc | ⊢ ( ∅  ∈  On  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ suc  ∅ )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ∅ ) ) ) | 
						
							| 78 | 25 77 | ax-mp | ⊢ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ suc  ∅ )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ∅ ) ) | 
						
							| 79 |  | opex | ⊢ 〈 𝑁 ,  𝑦 〉  ∈  V | 
						
							| 80 | 79 | rdg0 | ⊢ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ∅ )  =  〈 𝑁 ,  𝑦 〉 | 
						
							| 81 | 80 | fveq2i | ⊢ ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ∅ ) )  =  ( 𝐹 ‘ 〈 𝑁 ,  𝑦 〉 ) | 
						
							| 82 | 76 78 81 | 3eqtri | ⊢ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 1o )  =  ( 𝐹 ‘ 〈 𝑁 ,  𝑦 〉 ) | 
						
							| 83 | 1 | finxpreclem3 | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉  =  ( 𝐹 ‘ 〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 84 | 82 83 | eqtr4id | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 1o )  =  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) | 
						
							| 85 | 84 | fveq2d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 1o ) )  =  ( 𝐹 ‘ 〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ) | 
						
							| 86 |  | 2on0 | ⊢ 2o  ≠  ∅ | 
						
							| 87 |  | nnlim | ⊢ ( 2o  ∈  ω  →  ¬  Lim  2o ) | 
						
							| 88 | 2 87 | ax-mp | ⊢ ¬  Lim  2o | 
						
							| 89 |  | rdgsucuni | ⊢ ( ( 2o  ∈  On  ∧  2o  ≠  ∅  ∧  ¬  Lim  2o )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 2o )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ∪  2o ) ) ) | 
						
							| 90 | 4 86 88 89 | mp3an | ⊢ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 2o )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ∪  2o ) ) | 
						
							| 91 |  | 1oequni2o | ⊢ 1o  =  ∪  2o | 
						
							| 92 | 91 | fveq2i | ⊢ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 1o )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ∪  2o ) | 
						
							| 93 | 92 | fveq2i | ⊢ ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 1o ) )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ∪  2o ) ) | 
						
							| 94 | 90 93 | eqtr4i | ⊢ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 2o )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 1o ) ) | 
						
							| 95 | 75 | fveq2i | ⊢ ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 1o )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ suc  ∅ ) | 
						
							| 96 |  | rdgsuc | ⊢ ( ∅  ∈  On  →  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ suc  ∅ )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∅ ) ) ) | 
						
							| 97 | 25 96 | ax-mp | ⊢ ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ suc  ∅ )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∅ ) ) | 
						
							| 98 |  | opex | ⊢ 〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉  ∈  V | 
						
							| 99 | 98 | rdg0 | ⊢ ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∅ )  =  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 | 
						
							| 100 | 99 | fveq2i | ⊢ ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∅ ) )  =  ( 𝐹 ‘ 〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) | 
						
							| 101 | 95 97 100 | 3eqtri | ⊢ ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 1o )  =  ( 𝐹 ‘ 〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) | 
						
							| 102 | 85 94 101 | 3eqtr4g | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 2o )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 1o ) ) | 
						
							| 103 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 104 |  | rdgeqoa | ⊢ ( ( 2o  ∈  On  ∧  1o  ∈  On  ∧  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω )  →  ( ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 2o )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 1o )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) ) ) | 
						
							| 105 | 4 103 104 | mp3an12 | ⊢ ( ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 )  ∈  ω  →  ( ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 2o )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 1o )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) ) ) | 
						
							| 106 | 74 102 105 | sylc | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ( 1o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) ) ) | 
						
							| 107 | 20 | fveq2d | ⊢ ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ ( 2o  +o  ( ℩ 𝑜  ∈  On ( 2o  +o  𝑜 )  =  𝑁 ) ) )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) | 
						
							| 109 | 73 106 108 | 3eqtr2rd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  2o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  =  ( rec ( 𝐹 ,  〈 ∪  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∪  𝑁 ) ) |