Step |
Hyp |
Ref |
Expression |
1 |
|
finxpreclem4.1 |
⊢ 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
2 |
|
2onn |
⊢ 2o ∈ ω |
3 |
|
nnon |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ On ) |
4 |
|
2on |
⊢ 2o ∈ On |
5 |
|
oawordeu |
⊢ ( ( ( 2o ∈ On ∧ 𝑁 ∈ On ) ∧ 2o ⊆ 𝑁 ) → ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) |
6 |
4 5
|
mpanl1 |
⊢ ( ( 𝑁 ∈ On ∧ 2o ⊆ 𝑁 ) → ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) |
7 |
|
riotasbc |
⊢ ( ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 → [ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑁 ∈ On ∧ 2o ⊆ 𝑁 ) → [ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 ) |
9 |
|
riotaex |
⊢ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ V |
10 |
|
sbceq1g |
⊢ ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ V → ( [ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 ↔ ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ ( 2o +o 𝑜 ) = 𝑁 ) ) |
11 |
9 10
|
ax-mp |
⊢ ( [ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 ↔ ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ ( 2o +o 𝑜 ) = 𝑁 ) |
12 |
|
csbov2g |
⊢ ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ V → ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ ( 2o +o 𝑜 ) = ( 2o +o ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ 𝑜 ) ) |
13 |
9 12
|
ax-mp |
⊢ ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ ( 2o +o 𝑜 ) = ( 2o +o ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ 𝑜 ) |
14 |
9
|
csbvargi |
⊢ ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ 𝑜 = ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) |
15 |
14
|
oveq2i |
⊢ ( 2o +o ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ 𝑜 ) = ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) |
16 |
13 15
|
eqtri |
⊢ ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ ( 2o +o 𝑜 ) = ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) |
17 |
16
|
eqeq1i |
⊢ ( ⦋ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ⦌ ( 2o +o 𝑜 ) = 𝑁 ↔ ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = 𝑁 ) |
18 |
11 17
|
bitri |
⊢ ( [ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 ↔ ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = 𝑁 ) |
19 |
8 18
|
sylib |
⊢ ( ( 𝑁 ∈ On ∧ 2o ⊆ 𝑁 ) → ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = 𝑁 ) |
20 |
3 19
|
sylan |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = 𝑁 ) |
21 |
|
simpl |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → 𝑁 ∈ ω ) |
22 |
20 21
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ) |
23 |
|
riotacl |
⊢ ( ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 → ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On ) |
24 |
|
riotaund |
⊢ ( ¬ ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 → ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) = ∅ ) |
25 |
|
0elon |
⊢ ∅ ∈ On |
26 |
24 25
|
eqeltrdi |
⊢ ( ¬ ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 → ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On ) |
27 |
23 26
|
pm2.61i |
⊢ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On |
28 |
|
nnarcl |
⊢ ( ( 2o ∈ On ∧ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On ) → ( ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ↔ ( 2o ∈ ω ∧ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) ) ) |
29 |
4 28
|
mpan |
⊢ ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On → ( ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ↔ ( 2o ∈ ω ∧ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) ) ) |
30 |
2
|
biantrur |
⊢ ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ↔ ( 2o ∈ ω ∧ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) ) |
31 |
29 30
|
bitr4di |
⊢ ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On → ( ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ↔ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) ) |
32 |
27 31
|
ax-mp |
⊢ ( ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ↔ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) |
33 |
22 32
|
sylib |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) |
34 |
|
nnacom |
⊢ ( ( 2o ∈ ω ∧ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) → ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 2o ) ) |
35 |
2 33 34
|
sylancr |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 2o ) ) |
36 |
|
df-2o |
⊢ 2o = suc 1o |
37 |
36
|
oveq2i |
⊢ ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 2o ) = ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o suc 1o ) |
38 |
|
1onn |
⊢ 1o ∈ ω |
39 |
|
nnasuc |
⊢ ( ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ∧ 1o ∈ ω ) → ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o suc 1o ) = suc ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) ) |
40 |
33 38 39
|
sylancl |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o suc 1o ) = suc ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) ) |
41 |
37 40
|
syl5eq |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 2o ) = suc ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) ) |
42 |
35 20 41
|
3eqtr3d |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → 𝑁 = suc ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) ) |
43 |
3
|
adantr |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → 𝑁 ∈ On ) |
44 |
|
sucidg |
⊢ ( 1o ∈ ω → 1o ∈ suc 1o ) |
45 |
38 44
|
ax-mp |
⊢ 1o ∈ suc 1o |
46 |
45 36
|
eleqtrri |
⊢ 1o ∈ 2o |
47 |
|
ssel |
⊢ ( 2o ⊆ 𝑁 → ( 1o ∈ 2o → 1o ∈ 𝑁 ) ) |
48 |
46 47
|
mpi |
⊢ ( 2o ⊆ 𝑁 → 1o ∈ 𝑁 ) |
49 |
48
|
ne0d |
⊢ ( 2o ⊆ 𝑁 → 𝑁 ≠ ∅ ) |
50 |
49
|
adantl |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → 𝑁 ≠ ∅ ) |
51 |
|
nnlim |
⊢ ( 𝑁 ∈ ω → ¬ Lim 𝑁 ) |
52 |
51
|
adantr |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ¬ Lim 𝑁 ) |
53 |
|
onsucuni3 |
⊢ ( ( 𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim 𝑁 ) → 𝑁 = suc ∪ 𝑁 ) |
54 |
43 50 52 53
|
syl3anc |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → 𝑁 = suc ∪ 𝑁 ) |
55 |
|
nnacom |
⊢ ( ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ∧ 1o ∈ ω ) → ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) |
56 |
33 38 55
|
sylancl |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) |
57 |
|
suceq |
⊢ ( ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) → suc ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = suc ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) |
58 |
56 57
|
syl |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → suc ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = suc ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) |
59 |
42 54 58
|
3eqtr3d |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → suc ∪ 𝑁 = suc ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) |
60 |
|
ordom |
⊢ Ord ω |
61 |
|
ordelss |
⊢ ( ( Ord ω ∧ 𝑁 ∈ ω ) → 𝑁 ⊆ ω ) |
62 |
60 61
|
mpan |
⊢ ( 𝑁 ∈ ω → 𝑁 ⊆ ω ) |
63 |
|
nnfi |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ Fin ) |
64 |
|
nnunifi |
⊢ ( ( 𝑁 ⊆ ω ∧ 𝑁 ∈ Fin ) → ∪ 𝑁 ∈ ω ) |
65 |
62 63 64
|
syl2anc |
⊢ ( 𝑁 ∈ ω → ∪ 𝑁 ∈ ω ) |
66 |
65
|
adantr |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ∪ 𝑁 ∈ ω ) |
67 |
|
nnacl |
⊢ ( ( 1o ∈ ω ∧ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) → ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ) |
68 |
38 33 67
|
sylancr |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ) |
69 |
|
peano4 |
⊢ ( ( ∪ 𝑁 ∈ ω ∧ ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ) → ( suc ∪ 𝑁 = suc ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ↔ ∪ 𝑁 = ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) |
70 |
66 68 69
|
syl2anc |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( suc ∪ 𝑁 = suc ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ↔ ∪ 𝑁 = ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) |
71 |
59 70
|
mpbid |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ∪ 𝑁 = ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) |
72 |
71
|
fveq2d |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∪ 𝑁 ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∪ 𝑁 ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) |
74 |
33
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) |
75 |
|
df-1o |
⊢ 1o = suc ∅ |
76 |
75
|
fveq2i |
⊢ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 1o ) = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ suc ∅ ) |
77 |
|
rdgsuc |
⊢ ( ∅ ∈ On → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ suc ∅ ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ∅ ) ) ) |
78 |
25 77
|
ax-mp |
⊢ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ suc ∅ ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ∅ ) ) |
79 |
|
opex |
⊢ 〈 𝑁 , 𝑦 〉 ∈ V |
80 |
79
|
rdg0 |
⊢ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ∅ ) = 〈 𝑁 , 𝑦 〉 |
81 |
80
|
fveq2i |
⊢ ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ∅ ) ) = ( 𝐹 ‘ 〈 𝑁 , 𝑦 〉 ) |
82 |
76 78 81
|
3eqtri |
⊢ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 1o ) = ( 𝐹 ‘ 〈 𝑁 , 𝑦 〉 ) |
83 |
1
|
finxpreclem3 |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 = ( 𝐹 ‘ 〈 𝑁 , 𝑦 〉 ) ) |
84 |
82 83
|
eqtr4id |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 1o ) = 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) |
85 |
84
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 1o ) ) = ( 𝐹 ‘ 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ) |
86 |
|
2on0 |
⊢ 2o ≠ ∅ |
87 |
|
nnlim |
⊢ ( 2o ∈ ω → ¬ Lim 2o ) |
88 |
2 87
|
ax-mp |
⊢ ¬ Lim 2o |
89 |
|
rdgsucuni |
⊢ ( ( 2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 2o ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ∪ 2o ) ) ) |
90 |
4 86 88 89
|
mp3an |
⊢ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 2o ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ∪ 2o ) ) |
91 |
|
1oequni2o |
⊢ 1o = ∪ 2o |
92 |
91
|
fveq2i |
⊢ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 1o ) = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ∪ 2o ) |
93 |
92
|
fveq2i |
⊢ ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 1o ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ∪ 2o ) ) |
94 |
90 93
|
eqtr4i |
⊢ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 2o ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 1o ) ) |
95 |
75
|
fveq2i |
⊢ ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 1o ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ suc ∅ ) |
96 |
|
rdgsuc |
⊢ ( ∅ ∈ On → ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ suc ∅ ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∅ ) ) ) |
97 |
25 96
|
ax-mp |
⊢ ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ suc ∅ ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∅ ) ) |
98 |
|
opex |
⊢ 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ∈ V |
99 |
98
|
rdg0 |
⊢ ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∅ ) = 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 |
100 |
99
|
fveq2i |
⊢ ( 𝐹 ‘ ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∅ ) ) = ( 𝐹 ‘ 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) |
101 |
95 97 100
|
3eqtri |
⊢ ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 1o ) = ( 𝐹 ‘ 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) |
102 |
85 94 101
|
3eqtr4g |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 2o ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 1o ) ) |
103 |
|
1on |
⊢ 1o ∈ On |
104 |
|
rdgeqoa |
⊢ ( ( 2o ∈ On ∧ 1o ∈ On ∧ ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) → ( ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 2o ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 1o ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) ) |
105 |
4 103 104
|
mp3an12 |
⊢ ( ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω → ( ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 2o ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 1o ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) ) |
106 |
74 102 105
|
sylc |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ( 1o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) |
107 |
20
|
fveq2d |
⊢ ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) |
108 |
107
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ ( 2o +o ( ℩ 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) |
109 |
73 106 108
|
3eqtr2rd |
⊢ ( ( ( 𝑁 ∈ ω ∧ 2o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 〈 ∪ 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∪ 𝑁 ) ) |