Metamath Proof Explorer


Theorem finxpreclem4

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 23-Oct-2020)

Ref Expression
Hypothesis finxpreclem4.1 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
Assertion finxpreclem4 ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 finxpreclem4.1 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
2 2onn 2o ∈ ω
3 nnon ( 𝑁 ∈ ω → 𝑁 ∈ On )
4 2on 2o ∈ On
5 oawordeu ( ( ( 2o ∈ On ∧ 𝑁 ∈ On ) ∧ 2o𝑁 ) → ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 )
6 4 5 mpanl1 ( ( 𝑁 ∈ On ∧ 2o𝑁 ) → ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 )
7 riotasbc ( ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁[ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 )
8 6 7 syl ( ( 𝑁 ∈ On ∧ 2o𝑁 ) → [ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 )
9 riotaex ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ V
10 sbceq1g ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ V → ( [ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ( 2o +o 𝑜 ) = 𝑁 ) )
11 9 10 ax-mp ( [ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ( 2o +o 𝑜 ) = 𝑁 )
12 csbov2g ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ V → ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ( 2o +o 𝑜 ) = ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 𝑜 ) )
13 9 12 ax-mp ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ( 2o +o 𝑜 ) = ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 𝑜 )
14 9 csbvargi ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 𝑜 = ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 )
15 14 oveq2i ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 𝑜 ) = ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) )
16 13 15 eqtri ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ( 2o +o 𝑜 ) = ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) )
17 16 eqeq1i ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ( 2o +o 𝑜 ) = 𝑁 ↔ ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = 𝑁 )
18 11 17 bitri ( [ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) / 𝑜 ] ( 2o +o 𝑜 ) = 𝑁 ↔ ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = 𝑁 )
19 8 18 sylib ( ( 𝑁 ∈ On ∧ 2o𝑁 ) → ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = 𝑁 )
20 3 19 sylan ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = 𝑁 )
21 simpl ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → 𝑁 ∈ ω )
22 20 21 eqeltrd ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω )
23 riotacl ( ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 → ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On )
24 riotaund ( ¬ ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 → ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) = ∅ )
25 0elon ∅ ∈ On
26 24 25 eqeltrdi ( ¬ ∃! 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 → ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On )
27 23 26 pm2.61i ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On
28 nnarcl ( ( 2o ∈ On ∧ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On ) → ( ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ↔ ( 2o ∈ ω ∧ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) ) )
29 4 28 mpan ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On → ( ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ↔ ( 2o ∈ ω ∧ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) ) )
30 2 biantrur ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ↔ ( 2o ∈ ω ∧ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) )
31 29 30 bitr4di ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ On → ( ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ↔ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) )
32 27 31 ax-mp ( ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ↔ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω )
33 22 32 sylib ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω )
34 nnacom ( ( 2o ∈ ω ∧ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) → ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 2o ) )
35 2 33 34 sylancr ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) = ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 2o ) )
36 df-2o 2o = suc 1o
37 36 oveq2i ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 2o ) = ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o suc 1o )
38 1onn 1o ∈ ω
39 nnasuc ( ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ∧ 1o ∈ ω ) → ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o suc 1o ) = suc ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) )
40 33 38 39 sylancl ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o suc 1o ) = suc ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) )
41 37 40 syl5eq ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 2o ) = suc ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) )
42 35 20 41 3eqtr3d ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → 𝑁 = suc ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) )
43 3 adantr ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → 𝑁 ∈ On )
44 sucidg ( 1o ∈ ω → 1o ∈ suc 1o )
45 38 44 ax-mp 1o ∈ suc 1o
46 45 36 eleqtrri 1o ∈ 2o
47 ssel ( 2o𝑁 → ( 1o ∈ 2o → 1o𝑁 ) )
48 46 47 mpi ( 2o𝑁 → 1o𝑁 )
49 48 ne0d ( 2o𝑁𝑁 ≠ ∅ )
50 49 adantl ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → 𝑁 ≠ ∅ )
51 nnlim ( 𝑁 ∈ ω → ¬ Lim 𝑁 )
52 51 adantr ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ¬ Lim 𝑁 )
53 onsucuni3 ( ( 𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim 𝑁 ) → 𝑁 = suc 𝑁 )
54 43 50 52 53 syl3anc ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → 𝑁 = suc 𝑁 )
55 nnacom ( ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ∧ 1o ∈ ω ) → ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) )
56 33 38 55 sylancl ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) )
57 suceq ( ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) → suc ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = suc ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) )
58 56 57 syl ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → suc ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) +o 1o ) = suc ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) )
59 42 54 58 3eqtr3d ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → suc 𝑁 = suc ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) )
60 ordom Ord ω
61 ordelss ( ( Ord ω ∧ 𝑁 ∈ ω ) → 𝑁 ⊆ ω )
62 60 61 mpan ( 𝑁 ∈ ω → 𝑁 ⊆ ω )
63 nnfi ( 𝑁 ∈ ω → 𝑁 ∈ Fin )
64 nnunifi ( ( 𝑁 ⊆ ω ∧ 𝑁 ∈ Fin ) → 𝑁 ∈ ω )
65 62 63 64 syl2anc ( 𝑁 ∈ ω → 𝑁 ∈ ω )
66 65 adantr ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → 𝑁 ∈ ω )
67 nnacl ( ( 1o ∈ ω ∧ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) → ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω )
68 38 33 67 sylancr ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω )
69 peano4 ( ( 𝑁 ∈ ω ∧ ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ∈ ω ) → ( suc 𝑁 = suc ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ↔ 𝑁 = ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) )
70 66 68 69 syl2anc ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( suc 𝑁 = suc ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ↔ 𝑁 = ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) )
71 59 70 mpbid ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → 𝑁 = ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) )
72 71 fveq2d ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 𝑁 ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) )
73 72 adantr ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 𝑁 ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) )
74 33 adantr ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω )
75 df-1o 1o = suc ∅
76 75 fveq2i ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 1o ) = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ suc ∅ )
77 rdgsuc ( ∅ ∈ On → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ suc ∅ ) = ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ∅ ) ) )
78 25 77 ax-mp ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ suc ∅ ) = ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ∅ ) )
79 opex 𝑁 , 𝑦 ⟩ ∈ V
80 79 rdg0 ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ∅ ) = ⟨ 𝑁 , 𝑦
81 80 fveq2i ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ∅ ) ) = ( 𝐹 ‘ ⟨ 𝑁 , 𝑦 ⟩ )
82 76 78 81 3eqtri ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 1o ) = ( 𝐹 ‘ ⟨ 𝑁 , 𝑦 ⟩ )
83 1 finxpreclem3 ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ⟨ 𝑁 , ( 1st𝑦 ) ⟩ = ( 𝐹 ‘ ⟨ 𝑁 , 𝑦 ⟩ ) )
84 82 83 eqtr4id ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 1o ) = ⟨ 𝑁 , ( 1st𝑦 ) ⟩ )
85 84 fveq2d ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 1o ) ) = ( 𝐹 ‘ ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) )
86 2on0 2o ≠ ∅
87 nnlim ( 2o ∈ ω → ¬ Lim 2o )
88 2 87 ax-mp ¬ Lim 2o
89 rdgsucuni ( ( 2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) = ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) ) )
90 4 86 88 89 mp3an ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) = ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) )
91 1oequni2o 1o = 2o
92 91 fveq2i ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 1o ) = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o )
93 92 fveq2i ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 1o ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) )
94 90 93 eqtr4i ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) = ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 1o ) )
95 75 fveq2i ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 1o ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ suc ∅ )
96 rdgsuc ( ∅ ∈ On → ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ suc ∅ ) = ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ∅ ) ) )
97 25 96 ax-mp ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ suc ∅ ) = ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ∅ ) )
98 opex 𝑁 , ( 1st𝑦 ) ⟩ ∈ V
99 98 rdg0 ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ∅ ) = ⟨ 𝑁 , ( 1st𝑦 ) ⟩
100 99 fveq2i ( 𝐹 ‘ ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ∅ ) ) = ( 𝐹 ‘ ⟨ 𝑁 , ( 1st𝑦 ) ⟩ )
101 95 97 100 3eqtri ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 1o ) = ( 𝐹 ‘ ⟨ 𝑁 , ( 1st𝑦 ) ⟩ )
102 85 94 101 3eqtr4g ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 1o ) )
103 1on 1o ∈ On
104 rdgeqoa ( ( 2o ∈ On ∧ 1o ∈ On ∧ ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω ) → ( ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 1o ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) )
105 4 103 104 mp3an12 ( ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ∈ ω → ( ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 2o ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 1o ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) ) )
106 74 102 105 sylc ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ ( 1o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) )
107 20 fveq2d ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) )
108 107 adantr ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ ( 2o +o ( 𝑜 ∈ On ( 2o +o 𝑜 ) = 𝑁 ) ) ) = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) )
109 73 106 108 3eqtr2rd ( ( ( 𝑁 ∈ ω ∧ 2o𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) = ( rec ( 𝐹 , ⟨ 𝑁 , ( 1st𝑦 ) ⟩ ) ‘ 𝑁 ) )