| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +o 𝐵 ) = ( 𝐴 +o 𝐵 ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐴 ) ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 +o 𝐵 ) = ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) = ( 𝐵 +o 𝐴 ) ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ ω → ( 𝑥 +o 𝐵 ) = ( 𝐵 +o 𝑥 ) ) ↔ ( 𝐵 ∈ ω → ( 𝐴 +o 𝐵 ) = ( 𝐵 +o 𝐴 ) ) ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 +o 𝐵 ) = ( ∅ +o 𝐵 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) |
| 7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 +o 𝐵 ) = ( 𝐵 +o 𝑥 ) ↔ ( ∅ +o 𝐵 ) = ( 𝐵 +o ∅ ) ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 +o 𝐵 ) = ( 𝑦 +o 𝐵 ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 +o 𝐵 ) = ( 𝐵 +o 𝑥 ) ↔ ( 𝑦 +o 𝐵 ) = ( 𝐵 +o 𝑦 ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 +o 𝐵 ) = ( suc 𝑦 +o 𝐵 ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 +o 𝐵 ) = ( 𝐵 +o 𝑥 ) ↔ ( suc 𝑦 +o 𝐵 ) = ( 𝐵 +o suc 𝑦 ) ) ) |
| 14 |
|
nna0r |
⊢ ( 𝐵 ∈ ω → ( ∅ +o 𝐵 ) = 𝐵 ) |
| 15 |
|
nna0 |
⊢ ( 𝐵 ∈ ω → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 16 |
14 15
|
eqtr4d |
⊢ ( 𝐵 ∈ ω → ( ∅ +o 𝐵 ) = ( 𝐵 +o ∅ ) ) |
| 17 |
|
suceq |
⊢ ( ( 𝑦 +o 𝐵 ) = ( 𝐵 +o 𝑦 ) → suc ( 𝑦 +o 𝐵 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( suc 𝑦 +o 𝑥 ) = ( suc 𝑦 +o 𝐵 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 +o 𝑥 ) = ( 𝑦 +o 𝐵 ) ) |
| 20 |
|
suceq |
⊢ ( ( 𝑦 +o 𝑥 ) = ( 𝑦 +o 𝐵 ) → suc ( 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝐵 ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑥 = 𝐵 → suc ( 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝐵 ) ) |
| 22 |
18 21
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( suc 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝑥 ) ↔ ( suc 𝑦 +o 𝐵 ) = suc ( 𝑦 +o 𝐵 ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑦 ∈ ω → ( suc 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝑥 ) ) ↔ ( 𝑦 ∈ ω → ( suc 𝑦 +o 𝐵 ) = suc ( 𝑦 +o 𝐵 ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( suc 𝑦 +o 𝑥 ) = ( suc 𝑦 +o ∅ ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑦 +o 𝑥 ) = ( 𝑦 +o ∅ ) ) |
| 26 |
|
suceq |
⊢ ( ( 𝑦 +o 𝑥 ) = ( 𝑦 +o ∅ ) → suc ( 𝑦 +o 𝑥 ) = suc ( 𝑦 +o ∅ ) ) |
| 27 |
25 26
|
syl |
⊢ ( 𝑥 = ∅ → suc ( 𝑦 +o 𝑥 ) = suc ( 𝑦 +o ∅ ) ) |
| 28 |
24 27
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( suc 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝑥 ) ↔ ( suc 𝑦 +o ∅ ) = suc ( 𝑦 +o ∅ ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( suc 𝑦 +o 𝑥 ) = ( suc 𝑦 +o 𝑧 ) ) |
| 30 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 +o 𝑥 ) = ( 𝑦 +o 𝑧 ) ) |
| 31 |
|
suceq |
⊢ ( ( 𝑦 +o 𝑥 ) = ( 𝑦 +o 𝑧 ) → suc ( 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝑧 ) ) |
| 32 |
30 31
|
syl |
⊢ ( 𝑥 = 𝑧 → suc ( 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝑧 ) ) |
| 33 |
29 32
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( suc 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝑥 ) ↔ ( suc 𝑦 +o 𝑧 ) = suc ( 𝑦 +o 𝑧 ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑧 → ( suc 𝑦 +o 𝑥 ) = ( suc 𝑦 +o suc 𝑧 ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑧 → ( 𝑦 +o 𝑥 ) = ( 𝑦 +o suc 𝑧 ) ) |
| 36 |
|
suceq |
⊢ ( ( 𝑦 +o 𝑥 ) = ( 𝑦 +o suc 𝑧 ) → suc ( 𝑦 +o 𝑥 ) = suc ( 𝑦 +o suc 𝑧 ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑥 = suc 𝑧 → suc ( 𝑦 +o 𝑥 ) = suc ( 𝑦 +o suc 𝑧 ) ) |
| 38 |
34 37
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑧 → ( ( suc 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝑥 ) ↔ ( suc 𝑦 +o suc 𝑧 ) = suc ( 𝑦 +o suc 𝑧 ) ) ) |
| 39 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
| 40 |
|
nna0 |
⊢ ( suc 𝑦 ∈ ω → ( suc 𝑦 +o ∅ ) = suc 𝑦 ) |
| 41 |
39 40
|
syl |
⊢ ( 𝑦 ∈ ω → ( suc 𝑦 +o ∅ ) = suc 𝑦 ) |
| 42 |
|
nna0 |
⊢ ( 𝑦 ∈ ω → ( 𝑦 +o ∅ ) = 𝑦 ) |
| 43 |
|
suceq |
⊢ ( ( 𝑦 +o ∅ ) = 𝑦 → suc ( 𝑦 +o ∅ ) = suc 𝑦 ) |
| 44 |
42 43
|
syl |
⊢ ( 𝑦 ∈ ω → suc ( 𝑦 +o ∅ ) = suc 𝑦 ) |
| 45 |
41 44
|
eqtr4d |
⊢ ( 𝑦 ∈ ω → ( suc 𝑦 +o ∅ ) = suc ( 𝑦 +o ∅ ) ) |
| 46 |
|
suceq |
⊢ ( ( suc 𝑦 +o 𝑧 ) = suc ( 𝑦 +o 𝑧 ) → suc ( suc 𝑦 +o 𝑧 ) = suc suc ( 𝑦 +o 𝑧 ) ) |
| 47 |
|
nnasuc |
⊢ ( ( suc 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( suc 𝑦 +o suc 𝑧 ) = suc ( suc 𝑦 +o 𝑧 ) ) |
| 48 |
39 47
|
sylan |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( suc 𝑦 +o suc 𝑧 ) = suc ( suc 𝑦 +o 𝑧 ) ) |
| 49 |
|
nnasuc |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 +o suc 𝑧 ) = suc ( 𝑦 +o 𝑧 ) ) |
| 50 |
|
suceq |
⊢ ( ( 𝑦 +o suc 𝑧 ) = suc ( 𝑦 +o 𝑧 ) → suc ( 𝑦 +o suc 𝑧 ) = suc suc ( 𝑦 +o 𝑧 ) ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → suc ( 𝑦 +o suc 𝑧 ) = suc suc ( 𝑦 +o 𝑧 ) ) |
| 52 |
48 51
|
eqeq12d |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( suc 𝑦 +o suc 𝑧 ) = suc ( 𝑦 +o suc 𝑧 ) ↔ suc ( suc 𝑦 +o 𝑧 ) = suc suc ( 𝑦 +o 𝑧 ) ) ) |
| 53 |
46 52
|
imbitrrid |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( suc 𝑦 +o 𝑧 ) = suc ( 𝑦 +o 𝑧 ) → ( suc 𝑦 +o suc 𝑧 ) = suc ( 𝑦 +o suc 𝑧 ) ) ) |
| 54 |
53
|
expcom |
⊢ ( 𝑧 ∈ ω → ( 𝑦 ∈ ω → ( ( suc 𝑦 +o 𝑧 ) = suc ( 𝑦 +o 𝑧 ) → ( suc 𝑦 +o suc 𝑧 ) = suc ( 𝑦 +o suc 𝑧 ) ) ) ) |
| 55 |
28 33 38 45 54
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝑦 ∈ ω → ( suc 𝑦 +o 𝑥 ) = suc ( 𝑦 +o 𝑥 ) ) ) |
| 56 |
23 55
|
vtoclga |
⊢ ( 𝐵 ∈ ω → ( 𝑦 ∈ ω → ( suc 𝑦 +o 𝐵 ) = suc ( 𝑦 +o 𝐵 ) ) ) |
| 57 |
56
|
imp |
⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝑦 +o 𝐵 ) = suc ( 𝑦 +o 𝐵 ) ) |
| 58 |
|
nnasuc |
⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 59 |
57 58
|
eqeq12d |
⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 +o 𝐵 ) = ( 𝐵 +o suc 𝑦 ) ↔ suc ( 𝑦 +o 𝐵 ) = suc ( 𝐵 +o 𝑦 ) ) ) |
| 60 |
17 59
|
imbitrrid |
⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝑦 +o 𝐵 ) = ( 𝐵 +o 𝑦 ) → ( suc 𝑦 +o 𝐵 ) = ( 𝐵 +o suc 𝑦 ) ) ) |
| 61 |
60
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝐵 ∈ ω → ( ( 𝑦 +o 𝐵 ) = ( 𝐵 +o 𝑦 ) → ( suc 𝑦 +o 𝐵 ) = ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 62 |
7 10 13 16 61
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝐵 ∈ ω → ( 𝑥 +o 𝐵 ) = ( 𝐵 +o 𝑥 ) ) ) |
| 63 |
4 62
|
vtoclga |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐴 +o 𝐵 ) = ( 𝐵 +o 𝐴 ) ) ) |
| 64 |
63
|
imp |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) = ( 𝐵 +o 𝐴 ) ) |