| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( x = A -> ( x +o B ) = ( A +o B ) ) |
| 2 |
|
oveq2 |
|- ( x = A -> ( B +o x ) = ( B +o A ) ) |
| 3 |
1 2
|
eqeq12d |
|- ( x = A -> ( ( x +o B ) = ( B +o x ) <-> ( A +o B ) = ( B +o A ) ) ) |
| 4 |
3
|
imbi2d |
|- ( x = A -> ( ( B e. _om -> ( x +o B ) = ( B +o x ) ) <-> ( B e. _om -> ( A +o B ) = ( B +o A ) ) ) ) |
| 5 |
|
oveq1 |
|- ( x = (/) -> ( x +o B ) = ( (/) +o B ) ) |
| 6 |
|
oveq2 |
|- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
| 7 |
5 6
|
eqeq12d |
|- ( x = (/) -> ( ( x +o B ) = ( B +o x ) <-> ( (/) +o B ) = ( B +o (/) ) ) ) |
| 8 |
|
oveq1 |
|- ( x = y -> ( x +o B ) = ( y +o B ) ) |
| 9 |
|
oveq2 |
|- ( x = y -> ( B +o x ) = ( B +o y ) ) |
| 10 |
8 9
|
eqeq12d |
|- ( x = y -> ( ( x +o B ) = ( B +o x ) <-> ( y +o B ) = ( B +o y ) ) ) |
| 11 |
|
oveq1 |
|- ( x = suc y -> ( x +o B ) = ( suc y +o B ) ) |
| 12 |
|
oveq2 |
|- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
| 13 |
11 12
|
eqeq12d |
|- ( x = suc y -> ( ( x +o B ) = ( B +o x ) <-> ( suc y +o B ) = ( B +o suc y ) ) ) |
| 14 |
|
nna0r |
|- ( B e. _om -> ( (/) +o B ) = B ) |
| 15 |
|
nna0 |
|- ( B e. _om -> ( B +o (/) ) = B ) |
| 16 |
14 15
|
eqtr4d |
|- ( B e. _om -> ( (/) +o B ) = ( B +o (/) ) ) |
| 17 |
|
suceq |
|- ( ( y +o B ) = ( B +o y ) -> suc ( y +o B ) = suc ( B +o y ) ) |
| 18 |
|
oveq2 |
|- ( x = B -> ( suc y +o x ) = ( suc y +o B ) ) |
| 19 |
|
oveq2 |
|- ( x = B -> ( y +o x ) = ( y +o B ) ) |
| 20 |
|
suceq |
|- ( ( y +o x ) = ( y +o B ) -> suc ( y +o x ) = suc ( y +o B ) ) |
| 21 |
19 20
|
syl |
|- ( x = B -> suc ( y +o x ) = suc ( y +o B ) ) |
| 22 |
18 21
|
eqeq12d |
|- ( x = B -> ( ( suc y +o x ) = suc ( y +o x ) <-> ( suc y +o B ) = suc ( y +o B ) ) ) |
| 23 |
22
|
imbi2d |
|- ( x = B -> ( ( y e. _om -> ( suc y +o x ) = suc ( y +o x ) ) <-> ( y e. _om -> ( suc y +o B ) = suc ( y +o B ) ) ) ) |
| 24 |
|
oveq2 |
|- ( x = (/) -> ( suc y +o x ) = ( suc y +o (/) ) ) |
| 25 |
|
oveq2 |
|- ( x = (/) -> ( y +o x ) = ( y +o (/) ) ) |
| 26 |
|
suceq |
|- ( ( y +o x ) = ( y +o (/) ) -> suc ( y +o x ) = suc ( y +o (/) ) ) |
| 27 |
25 26
|
syl |
|- ( x = (/) -> suc ( y +o x ) = suc ( y +o (/) ) ) |
| 28 |
24 27
|
eqeq12d |
|- ( x = (/) -> ( ( suc y +o x ) = suc ( y +o x ) <-> ( suc y +o (/) ) = suc ( y +o (/) ) ) ) |
| 29 |
|
oveq2 |
|- ( x = z -> ( suc y +o x ) = ( suc y +o z ) ) |
| 30 |
|
oveq2 |
|- ( x = z -> ( y +o x ) = ( y +o z ) ) |
| 31 |
|
suceq |
|- ( ( y +o x ) = ( y +o z ) -> suc ( y +o x ) = suc ( y +o z ) ) |
| 32 |
30 31
|
syl |
|- ( x = z -> suc ( y +o x ) = suc ( y +o z ) ) |
| 33 |
29 32
|
eqeq12d |
|- ( x = z -> ( ( suc y +o x ) = suc ( y +o x ) <-> ( suc y +o z ) = suc ( y +o z ) ) ) |
| 34 |
|
oveq2 |
|- ( x = suc z -> ( suc y +o x ) = ( suc y +o suc z ) ) |
| 35 |
|
oveq2 |
|- ( x = suc z -> ( y +o x ) = ( y +o suc z ) ) |
| 36 |
|
suceq |
|- ( ( y +o x ) = ( y +o suc z ) -> suc ( y +o x ) = suc ( y +o suc z ) ) |
| 37 |
35 36
|
syl |
|- ( x = suc z -> suc ( y +o x ) = suc ( y +o suc z ) ) |
| 38 |
34 37
|
eqeq12d |
|- ( x = suc z -> ( ( suc y +o x ) = suc ( y +o x ) <-> ( suc y +o suc z ) = suc ( y +o suc z ) ) ) |
| 39 |
|
peano2 |
|- ( y e. _om -> suc y e. _om ) |
| 40 |
|
nna0 |
|- ( suc y e. _om -> ( suc y +o (/) ) = suc y ) |
| 41 |
39 40
|
syl |
|- ( y e. _om -> ( suc y +o (/) ) = suc y ) |
| 42 |
|
nna0 |
|- ( y e. _om -> ( y +o (/) ) = y ) |
| 43 |
|
suceq |
|- ( ( y +o (/) ) = y -> suc ( y +o (/) ) = suc y ) |
| 44 |
42 43
|
syl |
|- ( y e. _om -> suc ( y +o (/) ) = suc y ) |
| 45 |
41 44
|
eqtr4d |
|- ( y e. _om -> ( suc y +o (/) ) = suc ( y +o (/) ) ) |
| 46 |
|
suceq |
|- ( ( suc y +o z ) = suc ( y +o z ) -> suc ( suc y +o z ) = suc suc ( y +o z ) ) |
| 47 |
|
nnasuc |
|- ( ( suc y e. _om /\ z e. _om ) -> ( suc y +o suc z ) = suc ( suc y +o z ) ) |
| 48 |
39 47
|
sylan |
|- ( ( y e. _om /\ z e. _om ) -> ( suc y +o suc z ) = suc ( suc y +o z ) ) |
| 49 |
|
nnasuc |
|- ( ( y e. _om /\ z e. _om ) -> ( y +o suc z ) = suc ( y +o z ) ) |
| 50 |
|
suceq |
|- ( ( y +o suc z ) = suc ( y +o z ) -> suc ( y +o suc z ) = suc suc ( y +o z ) ) |
| 51 |
49 50
|
syl |
|- ( ( y e. _om /\ z e. _om ) -> suc ( y +o suc z ) = suc suc ( y +o z ) ) |
| 52 |
48 51
|
eqeq12d |
|- ( ( y e. _om /\ z e. _om ) -> ( ( suc y +o suc z ) = suc ( y +o suc z ) <-> suc ( suc y +o z ) = suc suc ( y +o z ) ) ) |
| 53 |
46 52
|
imbitrrid |
|- ( ( y e. _om /\ z e. _om ) -> ( ( suc y +o z ) = suc ( y +o z ) -> ( suc y +o suc z ) = suc ( y +o suc z ) ) ) |
| 54 |
53
|
expcom |
|- ( z e. _om -> ( y e. _om -> ( ( suc y +o z ) = suc ( y +o z ) -> ( suc y +o suc z ) = suc ( y +o suc z ) ) ) ) |
| 55 |
28 33 38 45 54
|
finds2 |
|- ( x e. _om -> ( y e. _om -> ( suc y +o x ) = suc ( y +o x ) ) ) |
| 56 |
23 55
|
vtoclga |
|- ( B e. _om -> ( y e. _om -> ( suc y +o B ) = suc ( y +o B ) ) ) |
| 57 |
56
|
imp |
|- ( ( B e. _om /\ y e. _om ) -> ( suc y +o B ) = suc ( y +o B ) ) |
| 58 |
|
nnasuc |
|- ( ( B e. _om /\ y e. _om ) -> ( B +o suc y ) = suc ( B +o y ) ) |
| 59 |
57 58
|
eqeq12d |
|- ( ( B e. _om /\ y e. _om ) -> ( ( suc y +o B ) = ( B +o suc y ) <-> suc ( y +o B ) = suc ( B +o y ) ) ) |
| 60 |
17 59
|
imbitrrid |
|- ( ( B e. _om /\ y e. _om ) -> ( ( y +o B ) = ( B +o y ) -> ( suc y +o B ) = ( B +o suc y ) ) ) |
| 61 |
60
|
expcom |
|- ( y e. _om -> ( B e. _om -> ( ( y +o B ) = ( B +o y ) -> ( suc y +o B ) = ( B +o suc y ) ) ) ) |
| 62 |
7 10 13 16 61
|
finds2 |
|- ( x e. _om -> ( B e. _om -> ( x +o B ) = ( B +o x ) ) ) |
| 63 |
4 62
|
vtoclga |
|- ( A e. _om -> ( B e. _om -> ( A +o B ) = ( B +o A ) ) ) |
| 64 |
63
|
imp |
|- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) = ( B +o A ) ) |