Step |
Hyp |
Ref |
Expression |
1 |
|
unieq |
⊢ ( 𝑆 = ∅ → ∪ 𝑆 = ∪ ∅ ) |
2 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
3 |
|
peano1 |
⊢ ∅ ∈ ω |
4 |
2 3
|
eqeltri |
⊢ ∪ ∅ ∈ ω |
5 |
1 4
|
eqeltrdi |
⊢ ( 𝑆 = ∅ → ∪ 𝑆 ∈ ω ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 = ∅ ) → ∪ 𝑆 ∈ ω ) |
7 |
|
simpll |
⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ω ) |
8 |
|
omsson |
⊢ ω ⊆ On |
9 |
7 8
|
sstrdi |
⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ On ) |
10 |
|
simplr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ Fin ) |
11 |
|
simpr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ ) |
12 |
|
ordunifi |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ∈ 𝑆 ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ∈ 𝑆 ) |
14 |
7 13
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ∈ ω ) |
15 |
6 14
|
pm2.61dane |
⊢ ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) → ∪ 𝑆 ∈ ω ) |