Metamath Proof Explorer


Theorem nnunifi

Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Assertion nnunifi ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) → 𝑆 ∈ ω )

Proof

Step Hyp Ref Expression
1 unieq ( 𝑆 = ∅ → 𝑆 = ∅ )
2 uni0 ∅ = ∅
3 peano1 ∅ ∈ ω
4 2 3 eqeltri ∅ ∈ ω
5 1 4 eqeltrdi ( 𝑆 = ∅ → 𝑆 ∈ ω )
6 5 adantl ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 = ∅ ) → 𝑆 ∈ ω )
7 simpll ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ ω )
8 omsson ω ⊆ On
9 7 8 sstrdi ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ⊆ On )
10 simplr ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ Fin )
11 simpr ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ )
12 ordunifi ( ( 𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ) → 𝑆𝑆 )
13 9 10 11 12 syl3anc ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆𝑆 )
14 7 13 sseldd ( ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ ω )
15 6 14 pm2.61dane ( ( 𝑆 ⊆ ω ∧ 𝑆 ∈ Fin ) → 𝑆 ∈ ω )