| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpreclem5.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 2 |  | df-ov | ⊢ ( 𝑛 𝐹 𝑥 )  =  ( 𝐹 ‘ 〈 𝑛 ,  𝑥 〉 ) | 
						
							| 3 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 |  | opex | ⊢ 〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉  ∈  V | 
						
							| 6 |  | opex | ⊢ 〈 𝑛 ,  𝑥 〉  ∈  V | 
						
							| 7 | 5 6 | ifex | ⊢ if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 )  ∈  V | 
						
							| 8 | 4 7 | ifex | ⊢ if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  ∈  V | 
						
							| 9 | 1 | ovmpt4g | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑥  ∈  V  ∧  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  ∈  V )  →  ( 𝑛 𝐹 𝑥 )  =  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 10 | 3 8 9 | mp3an23 | ⊢ ( 𝑛  ∈  ω  →  ( 𝑛 𝐹 𝑥 )  =  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( 𝑛 𝐹 𝑥 )  =  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 12 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 13 | 12 | onirri | ⊢ ¬  1o  ∈  1o | 
						
							| 14 |  | eleq2 | ⊢ ( 𝑛  =  1o  →  ( 1o  ∈  𝑛  ↔  1o  ∈  1o ) ) | 
						
							| 15 | 13 14 | mtbiri | ⊢ ( 𝑛  =  1o  →  ¬  1o  ∈  𝑛 ) | 
						
							| 16 | 15 | con2i | ⊢ ( 1o  ∈  𝑛  →  ¬  𝑛  =  1o ) | 
						
							| 17 | 16 | intnanrd | ⊢ ( 1o  ∈  𝑛  →  ¬  ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ) | 
						
							| 18 | 17 | iffalsed | ⊢ ( 1o  ∈  𝑛  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 20 |  | iffalse | ⊢ ( ¬  𝑥  ∈  ( V  ×  𝑈 )  →  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 )  =  〈 𝑛 ,  𝑥 〉 ) | 
						
							| 21 | 19 20 | sylan9eq | ⊢ ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  〈 𝑛 ,  𝑥 〉 ) | 
						
							| 22 | 11 21 | eqtrd | ⊢ ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( 𝑛 𝐹 𝑥 )  =  〈 𝑛 ,  𝑥 〉 ) | 
						
							| 23 | 2 22 | eqtr3id | ⊢ ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( 𝐹 ‘ 〈 𝑛 ,  𝑥 〉 )  =  〈 𝑛 ,  𝑥 〉 ) | 
						
							| 24 | 23 | ex | ⊢ ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  →  ( ¬  𝑥  ∈  ( V  ×  𝑈 )  →  ( 𝐹 ‘ 〈 𝑛 ,  𝑥 〉 )  =  〈 𝑛 ,  𝑥 〉 ) ) |