Step |
Hyp |
Ref |
Expression |
1 |
|
finxpreclem5.1 |
⊢ 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
2 |
|
df-ov |
⊢ ( 𝑛 𝐹 𝑥 ) = ( 𝐹 ‘ 〈 𝑛 , 𝑥 〉 ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
|
0ex |
⊢ ∅ ∈ V |
5 |
|
opex |
⊢ 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 ∈ V |
6 |
|
opex |
⊢ 〈 𝑛 , 𝑥 〉 ∈ V |
7 |
5 6
|
ifex |
⊢ if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ∈ V |
8 |
4 7
|
ifex |
⊢ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ∈ V |
9 |
1
|
ovmpt4g |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑥 ∈ V ∧ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ∈ V ) → ( 𝑛 𝐹 𝑥 ) = if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
10 |
3 8 9
|
mp3an23 |
⊢ ( 𝑛 ∈ ω → ( 𝑛 𝐹 𝑥 ) = if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( 𝑛 𝐹 𝑥 ) = if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
12 |
|
1on |
⊢ 1o ∈ On |
13 |
12
|
onirri |
⊢ ¬ 1o ∈ 1o |
14 |
|
eleq2 |
⊢ ( 𝑛 = 1o → ( 1o ∈ 𝑛 ↔ 1o ∈ 1o ) ) |
15 |
13 14
|
mtbiri |
⊢ ( 𝑛 = 1o → ¬ 1o ∈ 𝑛 ) |
16 |
15
|
con2i |
⊢ ( 1o ∈ 𝑛 → ¬ 𝑛 = 1o ) |
17 |
16
|
intnanrd |
⊢ ( 1o ∈ 𝑛 → ¬ ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) ) |
18 |
17
|
iffalsed |
⊢ ( 1o ∈ 𝑛 → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) |
20 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( V × 𝑈 ) → if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) = 〈 𝑛 , 𝑥 〉 ) |
21 |
19 20
|
sylan9eq |
⊢ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = 〈 𝑛 , 𝑥 〉 ) |
22 |
11 21
|
eqtrd |
⊢ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( 𝑛 𝐹 𝑥 ) = 〈 𝑛 , 𝑥 〉 ) |
23 |
2 22
|
eqtr3id |
⊢ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( 𝐹 ‘ 〈 𝑛 , 𝑥 〉 ) = 〈 𝑛 , 𝑥 〉 ) |
24 |
23
|
ex |
⊢ ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) → ( ¬ 𝑥 ∈ ( V × 𝑈 ) → ( 𝐹 ‘ 〈 𝑛 , 𝑥 〉 ) = 〈 𝑛 , 𝑥 〉 ) ) |