| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpreclem5.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 2 |  | eleq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  ∈  ω  ↔  𝑁  ∈  ω ) ) | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑛  =  𝑁  →  ( 1o  ∈  𝑛  ↔  1o  ∈  𝑁 ) ) | 
						
							| 4 | 2 3 | anbi12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ↔  ( 𝑁  ∈  ω  ∧  1o  ∈  𝑁 ) ) ) | 
						
							| 5 |  | anass | ⊢ ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) )  ↔  ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) ) ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) ) | 
						
							| 7 |  | nfmpo2 | ⊢ Ⅎ 𝑥 ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 8 | 1 7 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 〈 𝑛 ,  𝑦 〉 | 
						
							| 10 | 8 9 | nfrdg | ⊢ Ⅎ 𝑥 rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 𝑛 | 
						
							| 12 | 10 11 | nffv | ⊢ Ⅎ 𝑥 ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) | 
						
							| 13 | 12 | nfeq2 | ⊢ Ⅎ 𝑥 ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) | 
						
							| 14 | 13 | nfn | ⊢ Ⅎ 𝑥 ¬  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) | 
						
							| 15 | 6 14 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) )  →  ¬  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ( V  ×  𝑈 )  ↔  𝑦  ∈  ( V  ×  𝑈 ) ) ) | 
						
							| 17 | 16 | notbid | ⊢ ( 𝑥  =  𝑦  →  ( ¬  𝑥  ∈  ( V  ×  𝑈 )  ↔  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  ↔  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  ↔  ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) ) ) ) | 
						
							| 20 |  | opeq2 | ⊢ ( 𝑥  =  𝑦  →  〈 𝑛 ,  𝑥 〉  =  〈 𝑛 ,  𝑦 〉 ) | 
						
							| 21 |  | rdgeq2 | ⊢ ( 〈 𝑛 ,  𝑥 〉  =  〈 𝑛 ,  𝑦 〉  →  rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 )  =  rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝑥  =  𝑦  →  rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 )  =  rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ) | 
						
							| 23 | 22 | fveq1d | ⊢ ( 𝑥  =  𝑦  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑥  =  𝑦  →  ( ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  ↔  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) ) | 
						
							| 25 | 24 | notbid | ⊢ ( 𝑥  =  𝑦  →  ( ¬  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  ↔  ¬  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) ) | 
						
							| 26 | 19 25 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  ¬  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 ) )  ↔  ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) )  →  ¬  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) ) ) | 
						
							| 27 |  | anass | ⊢ ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  ↔  ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) ) ) | 
						
							| 28 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 29 |  | fveqeq2 | ⊢ ( 𝑚  =  ∅  →  ( ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑚 )  =  〈 𝑛 ,  𝑥 〉  ↔  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ ∅ )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 30 |  | fveqeq2 | ⊢ ( 𝑚  =  𝑜  →  ( ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑚 )  =  〈 𝑛 ,  𝑥 〉  ↔  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 31 |  | fveqeq2 | ⊢ ( 𝑚  =  suc  𝑜  →  ( ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑚 )  =  〈 𝑛 ,  𝑥 〉  ↔  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ suc  𝑜 )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 32 |  | opex | ⊢ 〈 𝑛 ,  𝑥 〉  ∈  V | 
						
							| 33 | 32 | rdg0 | ⊢ ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ ∅ )  =  〈 𝑛 ,  𝑥 〉 | 
						
							| 34 | 33 | a1i | ⊢ ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ ∅ )  =  〈 𝑛 ,  𝑥 〉 ) | 
						
							| 35 |  | nnon | ⊢ ( 𝑜  ∈  ω  →  𝑜  ∈  On ) | 
						
							| 36 |  | rdgsuc | ⊢ ( 𝑜  ∈  On  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ suc  𝑜 )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 ) ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝑜  ∈  ω  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ suc  𝑜 )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 )  =  〈 𝑛 ,  𝑥 〉  →  ( 𝐹 ‘ ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 ) )  =  ( 𝐹 ‘ 〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 39 | 37 38 | sylan9eq | ⊢ ( ( 𝑜  ∈  ω  ∧  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 )  =  〈 𝑛 ,  𝑥 〉 )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ suc  𝑜 )  =  ( 𝐹 ‘ 〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 40 | 1 | finxpreclem5 | ⊢ ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  →  ( ¬  𝑥  ∈  ( V  ×  𝑈 )  →  ( 𝐹 ‘ 〈 𝑛 ,  𝑥 〉 )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 41 | 40 | imp | ⊢ ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( 𝐹 ‘ 〈 𝑛 ,  𝑥 〉 )  =  〈 𝑛 ,  𝑥 〉 ) | 
						
							| 42 | 39 41 | sylan9eq | ⊢ ( ( ( 𝑜  ∈  ω  ∧  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 )  =  〈 𝑛 ,  𝑥 〉 )  ∧  ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ suc  𝑜 )  =  〈 𝑛 ,  𝑥 〉 ) | 
						
							| 43 | 42 | expl | ⊢ ( 𝑜  ∈  ω  →  ( ( ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 )  =  〈 𝑛 ,  𝑥 〉  ∧  ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ suc  𝑜 )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 44 | 43 | expcomd | ⊢ ( 𝑜  ∈  ω  →  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑜 )  =  〈 𝑛 ,  𝑥 〉  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ suc  𝑜 )  =  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 45 | 29 30 31 34 44 | finds2 | ⊢ ( 𝑚  ∈  ω  →  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑚 )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 46 |  | eleq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈  ω  ↔  𝑚  ∈  ω ) ) | 
						
							| 47 |  | fveqeq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  〈 𝑛 ,  𝑥 〉  ↔  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑚 )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 48 | 47 | imbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  〈 𝑛 ,  𝑥 〉 )  ↔  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑚 )  =  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 49 | 46 48 | imbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑛  ∈  ω  →  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  〈 𝑛 ,  𝑥 〉 ) )  ↔  ( 𝑚  ∈  ω  →  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑚 )  =  〈 𝑛 ,  𝑥 〉 ) ) ) ) | 
						
							| 50 | 45 49 | mpbiri | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈  ω  →  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 51 | 50 | equcoms | ⊢ ( 𝑚  =  𝑛  →  ( 𝑛  ∈  ω  →  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 52 | 28 51 | vtocle | ⊢ ( 𝑛  ∈  ω  →  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 53 | 27 52 | biimtrrid | ⊢ ( 𝑛  ∈  ω  →  ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 54 | 53 | anabsi5 | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  =  〈 𝑛 ,  𝑥 〉 ) | 
						
							| 55 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 56 | 28 55 | opnzi | ⊢ 〈 𝑛 ,  𝑥 〉  ≠  ∅ | 
						
							| 57 | 56 | a1i | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  〈 𝑛 ,  𝑥 〉  ≠  ∅ ) | 
						
							| 58 | 54 57 | eqnetrd | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 59 | 58 | necomd | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  ∅  ≠  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 ) ) | 
						
							| 60 | 59 | neneqd | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑥  ∈  ( V  ×  𝑈 ) ) )  →  ¬  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑥 〉 ) ‘ 𝑛 ) ) | 
						
							| 61 | 15 26 60 | chvarfv | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) )  →  ¬  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) | 
						
							| 62 | 61 | intnand | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) )  →  ¬  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) ) )  →  ¬  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) ) | 
						
							| 64 |  | opeq1 | ⊢ ( 𝑛  =  𝑁  →  〈 𝑛 ,  𝑦 〉  =  〈 𝑁 ,  𝑦 〉 ) | 
						
							| 65 |  | rdgeq2 | ⊢ ( 〈 𝑛 ,  𝑦 〉  =  〈 𝑁 ,  𝑦 〉  →  rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 )  =  rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝑛  =  𝑁  →  rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 )  =  rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 67 |  | id | ⊢ ( 𝑛  =  𝑁  →  𝑛  =  𝑁 ) | 
						
							| 68 | 66 67 | fveq12d | ⊢ ( 𝑛  =  𝑁  →  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) | 
						
							| 69 | 68 | eqeq2d | ⊢ ( 𝑛  =  𝑁  →  ( ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 )  ↔  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 70 | 2 69 | anbi12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) )  ↔  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) ) | 
						
							| 71 | 70 | abbidv | ⊢ ( 𝑛  =  𝑁  →  { 𝑦  ∣  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) }  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } ) | 
						
							| 72 | 1 | dffinxpf | ⊢ ( 𝑈 ↑↑ 𝑁 )  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 73 | 71 72 | eqtr4di | ⊢ ( 𝑛  =  𝑁  →  { 𝑦  ∣  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) }  =  ( 𝑈 ↑↑ 𝑁 ) ) | 
						
							| 74 | 73 | eleq2d | ⊢ ( 𝑛  =  𝑁  →  ( 𝑦  ∈  { 𝑦  ∣  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) }  ↔  𝑦  ∈  ( 𝑈 ↑↑ 𝑁 ) ) ) | 
						
							| 75 |  | abid | ⊢ ( 𝑦  ∈  { 𝑦  ∣  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) }  ↔  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) ) | 
						
							| 76 | 74 75 | bitr3di | ⊢ ( 𝑛  =  𝑁  →  ( 𝑦  ∈  ( 𝑈 ↑↑ 𝑁 )  ↔  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝑛  =  𝑁  ∧  ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) ) )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ 𝑁 )  ↔  ( 𝑛  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑛 ,  𝑦 〉 ) ‘ 𝑛 ) ) ) ) | 
						
							| 78 | 63 77 | mtbird | ⊢ ( ( 𝑛  =  𝑁  ∧  ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) ) )  →  ¬  𝑦  ∈  ( 𝑈 ↑↑ 𝑁 ) ) | 
						
							| 79 | 78 | ex | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛  ∈  ω  ∧  ( 1o  ∈  𝑛  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) ) )  →  ¬  𝑦  ∈  ( 𝑈 ↑↑ 𝑁 ) ) ) | 
						
							| 80 | 5 79 | biimtrid | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  ∧  ¬  𝑦  ∈  ( V  ×  𝑈 ) )  →  ¬  𝑦  ∈  ( 𝑈 ↑↑ 𝑁 ) ) ) | 
						
							| 81 | 80 | expdimp | ⊢ ( ( 𝑛  =  𝑁  ∧  ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 ) )  →  ( ¬  𝑦  ∈  ( V  ×  𝑈 )  →  ¬  𝑦  ∈  ( 𝑈 ↑↑ 𝑁 ) ) ) | 
						
							| 82 | 81 | con4d | ⊢ ( ( 𝑛  =  𝑁  ∧  ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 ) )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ 𝑁 )  →  𝑦  ∈  ( V  ×  𝑈 ) ) ) | 
						
							| 83 | 82 | ssrdv | ⊢ ( ( 𝑛  =  𝑁  ∧  ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 ) )  →  ( 𝑈 ↑↑ 𝑁 )  ⊆  ( V  ×  𝑈 ) ) | 
						
							| 84 | 83 | ex | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛  ∈  ω  ∧  1o  ∈  𝑛 )  →  ( 𝑈 ↑↑ 𝑁 )  ⊆  ( V  ×  𝑈 ) ) ) | 
						
							| 85 | 4 84 | sylbird | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑁  ∈  ω  ∧  1o  ∈  𝑁 )  →  ( 𝑈 ↑↑ 𝑁 )  ⊆  ( V  ×  𝑈 ) ) ) | 
						
							| 86 | 85 | vtocleg | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑁  ∈  ω  ∧  1o  ∈  𝑁 )  →  ( 𝑈 ↑↑ 𝑁 )  ⊆  ( V  ×  𝑈 ) ) ) | 
						
							| 87 | 86 | anabsi5 | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ∈  𝑁 )  →  ( 𝑈 ↑↑ 𝑁 )  ⊆  ( V  ×  𝑈 ) ) |