| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finxpreclem5.1 |
⊢ 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
| 2 |
|
eleq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ ω ↔ 𝑁 ∈ ω ) ) |
| 3 |
|
eleq2 |
⊢ ( 𝑛 = 𝑁 → ( 1o ∈ 𝑛 ↔ 1o ∈ 𝑁 ) ) |
| 4 |
2 3
|
anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ↔ ( 𝑁 ∈ ω ∧ 1o ∈ 𝑁 ) ) ) |
| 5 |
|
anass |
⊢ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ↔ ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) |
| 7 |
|
nfmpo2 |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
| 8 |
1 7
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 〈 𝑛 , 𝑦 〉 |
| 10 |
8 9
|
nfrdg |
⊢ Ⅎ 𝑥 rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑛 |
| 12 |
10 11
|
nffv |
⊢ Ⅎ 𝑥 ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) |
| 13 |
12
|
nfeq2 |
⊢ Ⅎ 𝑥 ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) |
| 14 |
13
|
nfn |
⊢ Ⅎ 𝑥 ¬ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) |
| 15 |
6 14
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) → ¬ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) |
| 16 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( V × 𝑈 ) ↔ 𝑦 ∈ ( V × 𝑈 ) ) ) |
| 17 |
16
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( V × 𝑈 ) ↔ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) |
| 18 |
17
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ↔ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) ) |
| 19 |
18
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) ↔ ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) ) ) |
| 20 |
|
opeq2 |
⊢ ( 𝑥 = 𝑦 → 〈 𝑛 , 𝑥 〉 = 〈 𝑛 , 𝑦 〉 ) |
| 21 |
|
rdgeq2 |
⊢ ( 〈 𝑛 , 𝑥 〉 = 〈 𝑛 , 𝑦 〉 → rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) = rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑥 = 𝑦 → rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) = rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ) |
| 23 |
22
|
fveq1d |
⊢ ( 𝑥 = 𝑦 → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) ↔ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ) |
| 25 |
24
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) ↔ ¬ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ) |
| 26 |
19 25
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → ¬ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) ) ↔ ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) → ¬ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ) ) |
| 27 |
|
anass |
⊢ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ↔ ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) ) |
| 28 |
|
vex |
⊢ 𝑛 ∈ V |
| 29 |
|
fveqeq2 |
⊢ ( 𝑚 = ∅ → ( ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑚 ) = 〈 𝑛 , 𝑥 〉 ↔ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ ∅ ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 30 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑜 → ( ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑚 ) = 〈 𝑛 , 𝑥 〉 ↔ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 31 |
|
fveqeq2 |
⊢ ( 𝑚 = suc 𝑜 → ( ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑚 ) = 〈 𝑛 , 𝑥 〉 ↔ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ suc 𝑜 ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 32 |
|
opex |
⊢ 〈 𝑛 , 𝑥 〉 ∈ V |
| 33 |
32
|
rdg0 |
⊢ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ ∅ ) = 〈 𝑛 , 𝑥 〉 |
| 34 |
33
|
a1i |
⊢ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ ∅ ) = 〈 𝑛 , 𝑥 〉 ) |
| 35 |
|
nnon |
⊢ ( 𝑜 ∈ ω → 𝑜 ∈ On ) |
| 36 |
|
rdgsuc |
⊢ ( 𝑜 ∈ On → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ suc 𝑜 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑜 ∈ ω → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ suc 𝑜 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) = 〈 𝑛 , 𝑥 〉 → ( 𝐹 ‘ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) ) = ( 𝐹 ‘ 〈 𝑛 , 𝑥 〉 ) ) |
| 39 |
37 38
|
sylan9eq |
⊢ ( ( 𝑜 ∈ ω ∧ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) = 〈 𝑛 , 𝑥 〉 ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ suc 𝑜 ) = ( 𝐹 ‘ 〈 𝑛 , 𝑥 〉 ) ) |
| 40 |
1
|
finxpreclem5 |
⊢ ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) → ( ¬ 𝑥 ∈ ( V × 𝑈 ) → ( 𝐹 ‘ 〈 𝑛 , 𝑥 〉 ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 41 |
40
|
imp |
⊢ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( 𝐹 ‘ 〈 𝑛 , 𝑥 〉 ) = 〈 𝑛 , 𝑥 〉 ) |
| 42 |
39 41
|
sylan9eq |
⊢ ( ( ( 𝑜 ∈ ω ∧ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) = 〈 𝑛 , 𝑥 〉 ) ∧ ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ suc 𝑜 ) = 〈 𝑛 , 𝑥 〉 ) |
| 43 |
42
|
expl |
⊢ ( 𝑜 ∈ ω → ( ( ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) = 〈 𝑛 , 𝑥 〉 ∧ ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ suc 𝑜 ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 44 |
43
|
expcomd |
⊢ ( 𝑜 ∈ ω → ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑜 ) = 〈 𝑛 , 𝑥 〉 → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ suc 𝑜 ) = 〈 𝑛 , 𝑥 〉 ) ) ) |
| 45 |
29 30 31 34 44
|
finds2 |
⊢ ( 𝑚 ∈ ω → ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑚 ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 46 |
|
eleq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ ω ↔ 𝑚 ∈ ω ) ) |
| 47 |
|
fveqeq2 |
⊢ ( 𝑛 = 𝑚 → ( ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = 〈 𝑛 , 𝑥 〉 ↔ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑚 ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 48 |
47
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = 〈 𝑛 , 𝑥 〉 ) ↔ ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑚 ) = 〈 𝑛 , 𝑥 〉 ) ) ) |
| 49 |
46 48
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 ∈ ω → ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = 〈 𝑛 , 𝑥 〉 ) ) ↔ ( 𝑚 ∈ ω → ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑚 ) = 〈 𝑛 , 𝑥 〉 ) ) ) ) |
| 50 |
45 49
|
mpbiri |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ ω → ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = 〈 𝑛 , 𝑥 〉 ) ) ) |
| 51 |
50
|
equcoms |
⊢ ( 𝑚 = 𝑛 → ( 𝑛 ∈ ω → ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = 〈 𝑛 , 𝑥 〉 ) ) ) |
| 52 |
28 51
|
vtocle |
⊢ ( 𝑛 ∈ ω → ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 53 |
27 52
|
biimtrrid |
⊢ ( 𝑛 ∈ ω → ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = 〈 𝑛 , 𝑥 〉 ) ) |
| 54 |
53
|
anabsi5 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) = 〈 𝑛 , 𝑥 〉 ) |
| 55 |
|
vex |
⊢ 𝑥 ∈ V |
| 56 |
28 55
|
opnzi |
⊢ 〈 𝑛 , 𝑥 〉 ≠ ∅ |
| 57 |
56
|
a1i |
⊢ ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → 〈 𝑛 , 𝑥 〉 ≠ ∅ ) |
| 58 |
54 57
|
eqnetrd |
⊢ ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) ≠ ∅ ) |
| 59 |
58
|
necomd |
⊢ ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → ∅ ≠ ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) ) |
| 60 |
59
|
neneqd |
⊢ ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ ( V × 𝑈 ) ) ) → ¬ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑥 〉 ) ‘ 𝑛 ) ) |
| 61 |
15 26 60
|
chvarfv |
⊢ ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) → ¬ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) |
| 62 |
61
|
intnand |
⊢ ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) → ¬ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) ) → ¬ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ) |
| 64 |
|
opeq1 |
⊢ ( 𝑛 = 𝑁 → 〈 𝑛 , 𝑦 〉 = 〈 𝑁 , 𝑦 〉 ) |
| 65 |
|
rdgeq2 |
⊢ ( 〈 𝑛 , 𝑦 〉 = 〈 𝑁 , 𝑦 〉 → rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) = rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ) |
| 66 |
64 65
|
syl |
⊢ ( 𝑛 = 𝑁 → rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) = rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ) |
| 67 |
|
id |
⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) |
| 68 |
66 67
|
fveq12d |
⊢ ( 𝑛 = 𝑁 → ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) |
| 69 |
68
|
eqeq2d |
⊢ ( 𝑛 = 𝑁 → ( ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ↔ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) |
| 70 |
2 69
|
anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ↔ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) ) |
| 71 |
70
|
abbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑦 ∣ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) } = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } ) |
| 72 |
1
|
dffinxpf |
⊢ ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
| 73 |
71 72
|
eqtr4di |
⊢ ( 𝑛 = 𝑁 → { 𝑦 ∣ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) } = ( 𝑈 ↑↑ 𝑁 ) ) |
| 74 |
73
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑦 ∈ { 𝑦 ∣ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) } ↔ 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ) ) |
| 75 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) } ↔ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ) |
| 76 |
74 75
|
bitr3di |
⊢ ( 𝑛 = 𝑁 → ( 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ↔ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ) ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) ) → ( 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ↔ ( 𝑛 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑛 , 𝑦 〉 ) ‘ 𝑛 ) ) ) ) |
| 78 |
63 77
|
mtbird |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) ) → ¬ 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ) |
| 79 |
78
|
ex |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ∈ ω ∧ ( 1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) ) → ¬ 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ) ) |
| 80 |
5 79
|
biimtrid |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ∧ ¬ 𝑦 ∈ ( V × 𝑈 ) ) → ¬ 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ) ) |
| 81 |
80
|
expdimp |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ) → ( ¬ 𝑦 ∈ ( V × 𝑈 ) → ¬ 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ) ) |
| 82 |
81
|
con4d |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ) → ( 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) → 𝑦 ∈ ( V × 𝑈 ) ) ) |
| 83 |
82
|
ssrdv |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) ) → ( 𝑈 ↑↑ 𝑁 ) ⊆ ( V × 𝑈 ) ) |
| 84 |
83
|
ex |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ∈ ω ∧ 1o ∈ 𝑛 ) → ( 𝑈 ↑↑ 𝑁 ) ⊆ ( V × 𝑈 ) ) ) |
| 85 |
4 84
|
sylbird |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑁 ∈ ω ∧ 1o ∈ 𝑁 ) → ( 𝑈 ↑↑ 𝑁 ) ⊆ ( V × 𝑈 ) ) ) |
| 86 |
85
|
vtocleg |
⊢ ( 𝑁 ∈ ω → ( ( 𝑁 ∈ ω ∧ 1o ∈ 𝑁 ) → ( 𝑈 ↑↑ 𝑁 ) ⊆ ( V × 𝑈 ) ) ) |
| 87 |
86
|
anabsi5 |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ∈ 𝑁 ) → ( 𝑈 ↑↑ 𝑁 ) ⊆ ( V × 𝑈 ) ) |