| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpreclem5.1 |  |-  F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 2 |  | eleq1 |  |-  ( n = N -> ( n e. _om <-> N e. _om ) ) | 
						
							| 3 |  | eleq2 |  |-  ( n = N -> ( 1o e. n <-> 1o e. N ) ) | 
						
							| 4 | 2 3 | anbi12d |  |-  ( n = N -> ( ( n e. _om /\ 1o e. n ) <-> ( N e. _om /\ 1o e. N ) ) ) | 
						
							| 5 |  | anass |  |-  ( ( ( n e. _om /\ 1o e. n ) /\ -. y e. ( _V X. U ) ) <-> ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) | 
						
							| 6 |  | nfv |  |-  F/ x ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) | 
						
							| 7 |  | nfmpo2 |  |-  F/_ x ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 8 | 1 7 | nfcxfr |  |-  F/_ x F | 
						
							| 9 |  | nfcv |  |-  F/_ x <. n , y >. | 
						
							| 10 | 8 9 | nfrdg |  |-  F/_ x rec ( F , <. n , y >. ) | 
						
							| 11 |  | nfcv |  |-  F/_ x n | 
						
							| 12 | 10 11 | nffv |  |-  F/_ x ( rec ( F , <. n , y >. ) ` n ) | 
						
							| 13 | 12 | nfeq2 |  |-  F/ x (/) = ( rec ( F , <. n , y >. ) ` n ) | 
						
							| 14 | 13 | nfn |  |-  F/ x -. (/) = ( rec ( F , <. n , y >. ) ` n ) | 
						
							| 15 | 6 14 | nfim |  |-  F/ x ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , y >. ) ` n ) ) | 
						
							| 16 |  | eleq1 |  |-  ( x = y -> ( x e. ( _V X. U ) <-> y e. ( _V X. U ) ) ) | 
						
							| 17 | 16 | notbid |  |-  ( x = y -> ( -. x e. ( _V X. U ) <-> -. y e. ( _V X. U ) ) ) | 
						
							| 18 | 17 | anbi2d |  |-  ( x = y -> ( ( 1o e. n /\ -. x e. ( _V X. U ) ) <-> ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) | 
						
							| 19 | 18 | anbi2d |  |-  ( x = y -> ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) <-> ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) ) | 
						
							| 20 |  | opeq2 |  |-  ( x = y -> <. n , x >. = <. n , y >. ) | 
						
							| 21 |  | rdgeq2 |  |-  ( <. n , x >. = <. n , y >. -> rec ( F , <. n , x >. ) = rec ( F , <. n , y >. ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( x = y -> rec ( F , <. n , x >. ) = rec ( F , <. n , y >. ) ) | 
						
							| 23 | 22 | fveq1d |  |-  ( x = y -> ( rec ( F , <. n , x >. ) ` n ) = ( rec ( F , <. n , y >. ) ` n ) ) | 
						
							| 24 | 23 | eqeq2d |  |-  ( x = y -> ( (/) = ( rec ( F , <. n , x >. ) ` n ) <-> (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) | 
						
							| 25 | 24 | notbid |  |-  ( x = y -> ( -. (/) = ( rec ( F , <. n , x >. ) ` n ) <-> -. (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) | 
						
							| 26 | 19 25 | imbi12d |  |-  ( x = y -> ( ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , x >. ) ` n ) ) <-> ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) ) | 
						
							| 27 |  | anass |  |-  ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) <-> ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) ) | 
						
							| 28 |  | vex |  |-  n e. _V | 
						
							| 29 |  | fveqeq2 |  |-  ( m = (/) -> ( ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. <-> ( rec ( F , <. n , x >. ) ` (/) ) = <. n , x >. ) ) | 
						
							| 30 |  | fveqeq2 |  |-  ( m = o -> ( ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. <-> ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. ) ) | 
						
							| 31 |  | fveqeq2 |  |-  ( m = suc o -> ( ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. <-> ( rec ( F , <. n , x >. ) ` suc o ) = <. n , x >. ) ) | 
						
							| 32 |  | opex |  |-  <. n , x >. e. _V | 
						
							| 33 | 32 | rdg0 |  |-  ( rec ( F , <. n , x >. ) ` (/) ) = <. n , x >. | 
						
							| 34 | 33 | a1i |  |-  ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` (/) ) = <. n , x >. ) | 
						
							| 35 |  | nnon |  |-  ( o e. _om -> o e. On ) | 
						
							| 36 |  | rdgsuc |  |-  ( o e. On -> ( rec ( F , <. n , x >. ) ` suc o ) = ( F ` ( rec ( F , <. n , x >. ) ` o ) ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( o e. _om -> ( rec ( F , <. n , x >. ) ` suc o ) = ( F ` ( rec ( F , <. n , x >. ) ` o ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. -> ( F ` ( rec ( F , <. n , x >. ) ` o ) ) = ( F ` <. n , x >. ) ) | 
						
							| 39 | 37 38 | sylan9eq |  |-  ( ( o e. _om /\ ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. ) -> ( rec ( F , <. n , x >. ) ` suc o ) = ( F ` <. n , x >. ) ) | 
						
							| 40 | 1 | finxpreclem5 |  |-  ( ( n e. _om /\ 1o e. n ) -> ( -. x e. ( _V X. U ) -> ( F ` <. n , x >. ) = <. n , x >. ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( F ` <. n , x >. ) = <. n , x >. ) | 
						
							| 42 | 39 41 | sylan9eq |  |-  ( ( ( o e. _om /\ ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. ) /\ ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` suc o ) = <. n , x >. ) | 
						
							| 43 | 42 | expl |  |-  ( o e. _om -> ( ( ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. /\ ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` suc o ) = <. n , x >. ) ) | 
						
							| 44 | 43 | expcomd |  |-  ( o e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. -> ( rec ( F , <. n , x >. ) ` suc o ) = <. n , x >. ) ) ) | 
						
							| 45 | 29 30 31 34 44 | finds2 |  |-  ( m e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. ) ) | 
						
							| 46 |  | eleq1 |  |-  ( n = m -> ( n e. _om <-> m e. _om ) ) | 
						
							| 47 |  | fveqeq2 |  |-  ( n = m -> ( ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. <-> ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. ) ) | 
						
							| 48 | 47 | imbi2d |  |-  ( n = m -> ( ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) <-> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. ) ) ) | 
						
							| 49 | 46 48 | imbi12d |  |-  ( n = m -> ( ( n e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) <-> ( m e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. ) ) ) ) | 
						
							| 50 | 45 49 | mpbiri |  |-  ( n = m -> ( n e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) ) | 
						
							| 51 | 50 | equcoms |  |-  ( m = n -> ( n e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) ) | 
						
							| 52 | 28 51 | vtocle |  |-  ( n e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) | 
						
							| 53 | 27 52 | biimtrrid |  |-  ( n e. _om -> ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) | 
						
							| 54 | 53 | anabsi5 |  |-  ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) | 
						
							| 55 |  | vex |  |-  x e. _V | 
						
							| 56 | 28 55 | opnzi |  |-  <. n , x >. =/= (/) | 
						
							| 57 | 56 | a1i |  |-  ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> <. n , x >. =/= (/) ) | 
						
							| 58 | 54 57 | eqnetrd |  |-  ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` n ) =/= (/) ) | 
						
							| 59 | 58 | necomd |  |-  ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> (/) =/= ( rec ( F , <. n , x >. ) ` n ) ) | 
						
							| 60 | 59 | neneqd |  |-  ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , x >. ) ` n ) ) | 
						
							| 61 | 15 26 60 | chvarfv |  |-  ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , y >. ) ` n ) ) | 
						
							| 62 | 61 | intnand |  |-  ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( n = N /\ ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) -> -. ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) | 
						
							| 64 |  | opeq1 |  |-  ( n = N -> <. n , y >. = <. N , y >. ) | 
						
							| 65 |  | rdgeq2 |  |-  ( <. n , y >. = <. N , y >. -> rec ( F , <. n , y >. ) = rec ( F , <. N , y >. ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( n = N -> rec ( F , <. n , y >. ) = rec ( F , <. N , y >. ) ) | 
						
							| 67 |  | id |  |-  ( n = N -> n = N ) | 
						
							| 68 | 66 67 | fveq12d |  |-  ( n = N -> ( rec ( F , <. n , y >. ) ` n ) = ( rec ( F , <. N , y >. ) ` N ) ) | 
						
							| 69 | 68 | eqeq2d |  |-  ( n = N -> ( (/) = ( rec ( F , <. n , y >. ) ` n ) <-> (/) = ( rec ( F , <. N , y >. ) ` N ) ) ) | 
						
							| 70 | 2 69 | anbi12d |  |-  ( n = N -> ( ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) <-> ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) ) ) | 
						
							| 71 | 70 | abbidv |  |-  ( n = N -> { y | ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) } = { y | ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) } ) | 
						
							| 72 | 1 | dffinxpf |  |-  ( U ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) } | 
						
							| 73 | 71 72 | eqtr4di |  |-  ( n = N -> { y | ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) } = ( U ^^ N ) ) | 
						
							| 74 | 73 | eleq2d |  |-  ( n = N -> ( y e. { y | ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) } <-> y e. ( U ^^ N ) ) ) | 
						
							| 75 |  | abid |  |-  ( y e. { y | ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) } <-> ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) | 
						
							| 76 | 74 75 | bitr3di |  |-  ( n = N -> ( y e. ( U ^^ N ) <-> ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) ) | 
						
							| 77 | 76 | adantr |  |-  ( ( n = N /\ ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) -> ( y e. ( U ^^ N ) <-> ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) ) | 
						
							| 78 | 63 77 | mtbird |  |-  ( ( n = N /\ ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) -> -. y e. ( U ^^ N ) ) | 
						
							| 79 | 78 | ex |  |-  ( n = N -> ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. y e. ( U ^^ N ) ) ) | 
						
							| 80 | 5 79 | biimtrid |  |-  ( n = N -> ( ( ( n e. _om /\ 1o e. n ) /\ -. y e. ( _V X. U ) ) -> -. y e. ( U ^^ N ) ) ) | 
						
							| 81 | 80 | expdimp |  |-  ( ( n = N /\ ( n e. _om /\ 1o e. n ) ) -> ( -. y e. ( _V X. U ) -> -. y e. ( U ^^ N ) ) ) | 
						
							| 82 | 81 | con4d |  |-  ( ( n = N /\ ( n e. _om /\ 1o e. n ) ) -> ( y e. ( U ^^ N ) -> y e. ( _V X. U ) ) ) | 
						
							| 83 | 82 | ssrdv |  |-  ( ( n = N /\ ( n e. _om /\ 1o e. n ) ) -> ( U ^^ N ) C_ ( _V X. U ) ) | 
						
							| 84 | 83 | ex |  |-  ( n = N -> ( ( n e. _om /\ 1o e. n ) -> ( U ^^ N ) C_ ( _V X. U ) ) ) | 
						
							| 85 | 4 84 | sylbird |  |-  ( n = N -> ( ( N e. _om /\ 1o e. N ) -> ( U ^^ N ) C_ ( _V X. U ) ) ) | 
						
							| 86 | 85 | vtocleg |  |-  ( N e. _om -> ( ( N e. _om /\ 1o e. N ) -> ( U ^^ N ) C_ ( _V X. U ) ) ) | 
						
							| 87 | 86 | anabsi5 |  |-  ( ( N e. _om /\ 1o e. N ) -> ( U ^^ N ) C_ ( _V X. U ) ) |