Step |
Hyp |
Ref |
Expression |
1 |
|
finxpreclem5.1 |
|- F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
2 |
|
eleq1 |
|- ( n = N -> ( n e. _om <-> N e. _om ) ) |
3 |
|
eleq2 |
|- ( n = N -> ( 1o e. n <-> 1o e. N ) ) |
4 |
2 3
|
anbi12d |
|- ( n = N -> ( ( n e. _om /\ 1o e. n ) <-> ( N e. _om /\ 1o e. N ) ) ) |
5 |
|
anass |
|- ( ( ( n e. _om /\ 1o e. n ) /\ -. y e. ( _V X. U ) ) <-> ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) |
6 |
|
nfv |
|- F/ x ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) |
7 |
|
nfmpo2 |
|- F/_ x ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
8 |
1 7
|
nfcxfr |
|- F/_ x F |
9 |
|
nfcv |
|- F/_ x <. n , y >. |
10 |
8 9
|
nfrdg |
|- F/_ x rec ( F , <. n , y >. ) |
11 |
|
nfcv |
|- F/_ x n |
12 |
10 11
|
nffv |
|- F/_ x ( rec ( F , <. n , y >. ) ` n ) |
13 |
12
|
nfeq2 |
|- F/ x (/) = ( rec ( F , <. n , y >. ) ` n ) |
14 |
13
|
nfn |
|- F/ x -. (/) = ( rec ( F , <. n , y >. ) ` n ) |
15 |
6 14
|
nfim |
|- F/ x ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , y >. ) ` n ) ) |
16 |
|
eleq1 |
|- ( x = y -> ( x e. ( _V X. U ) <-> y e. ( _V X. U ) ) ) |
17 |
16
|
notbid |
|- ( x = y -> ( -. x e. ( _V X. U ) <-> -. y e. ( _V X. U ) ) ) |
18 |
17
|
anbi2d |
|- ( x = y -> ( ( 1o e. n /\ -. x e. ( _V X. U ) ) <-> ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) |
19 |
18
|
anbi2d |
|- ( x = y -> ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) <-> ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) ) |
20 |
|
opeq2 |
|- ( x = y -> <. n , x >. = <. n , y >. ) |
21 |
|
rdgeq2 |
|- ( <. n , x >. = <. n , y >. -> rec ( F , <. n , x >. ) = rec ( F , <. n , y >. ) ) |
22 |
20 21
|
syl |
|- ( x = y -> rec ( F , <. n , x >. ) = rec ( F , <. n , y >. ) ) |
23 |
22
|
fveq1d |
|- ( x = y -> ( rec ( F , <. n , x >. ) ` n ) = ( rec ( F , <. n , y >. ) ` n ) ) |
24 |
23
|
eqeq2d |
|- ( x = y -> ( (/) = ( rec ( F , <. n , x >. ) ` n ) <-> (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) |
25 |
24
|
notbid |
|- ( x = y -> ( -. (/) = ( rec ( F , <. n , x >. ) ` n ) <-> -. (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) |
26 |
19 25
|
imbi12d |
|- ( x = y -> ( ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , x >. ) ` n ) ) <-> ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) ) |
27 |
|
anass |
|- ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) <-> ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) ) |
28 |
|
vex |
|- n e. _V |
29 |
|
fveqeq2 |
|- ( m = (/) -> ( ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. <-> ( rec ( F , <. n , x >. ) ` (/) ) = <. n , x >. ) ) |
30 |
|
fveqeq2 |
|- ( m = o -> ( ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. <-> ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. ) ) |
31 |
|
fveqeq2 |
|- ( m = suc o -> ( ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. <-> ( rec ( F , <. n , x >. ) ` suc o ) = <. n , x >. ) ) |
32 |
|
opex |
|- <. n , x >. e. _V |
33 |
32
|
rdg0 |
|- ( rec ( F , <. n , x >. ) ` (/) ) = <. n , x >. |
34 |
33
|
a1i |
|- ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` (/) ) = <. n , x >. ) |
35 |
|
nnon |
|- ( o e. _om -> o e. On ) |
36 |
|
rdgsuc |
|- ( o e. On -> ( rec ( F , <. n , x >. ) ` suc o ) = ( F ` ( rec ( F , <. n , x >. ) ` o ) ) ) |
37 |
35 36
|
syl |
|- ( o e. _om -> ( rec ( F , <. n , x >. ) ` suc o ) = ( F ` ( rec ( F , <. n , x >. ) ` o ) ) ) |
38 |
|
fveq2 |
|- ( ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. -> ( F ` ( rec ( F , <. n , x >. ) ` o ) ) = ( F ` <. n , x >. ) ) |
39 |
37 38
|
sylan9eq |
|- ( ( o e. _om /\ ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. ) -> ( rec ( F , <. n , x >. ) ` suc o ) = ( F ` <. n , x >. ) ) |
40 |
1
|
finxpreclem5 |
|- ( ( n e. _om /\ 1o e. n ) -> ( -. x e. ( _V X. U ) -> ( F ` <. n , x >. ) = <. n , x >. ) ) |
41 |
40
|
imp |
|- ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( F ` <. n , x >. ) = <. n , x >. ) |
42 |
39 41
|
sylan9eq |
|- ( ( ( o e. _om /\ ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. ) /\ ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` suc o ) = <. n , x >. ) |
43 |
42
|
expl |
|- ( o e. _om -> ( ( ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. /\ ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` suc o ) = <. n , x >. ) ) |
44 |
43
|
expcomd |
|- ( o e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( ( rec ( F , <. n , x >. ) ` o ) = <. n , x >. -> ( rec ( F , <. n , x >. ) ` suc o ) = <. n , x >. ) ) ) |
45 |
29 30 31 34 44
|
finds2 |
|- ( m e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. ) ) |
46 |
|
eleq1 |
|- ( n = m -> ( n e. _om <-> m e. _om ) ) |
47 |
|
fveqeq2 |
|- ( n = m -> ( ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. <-> ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. ) ) |
48 |
47
|
imbi2d |
|- ( n = m -> ( ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) <-> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. ) ) ) |
49 |
46 48
|
imbi12d |
|- ( n = m -> ( ( n e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) <-> ( m e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` m ) = <. n , x >. ) ) ) ) |
50 |
45 49
|
mpbiri |
|- ( n = m -> ( n e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) ) |
51 |
50
|
equcoms |
|- ( m = n -> ( n e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) ) |
52 |
28 51
|
vtocle |
|- ( n e. _om -> ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) |
53 |
27 52
|
syl5bir |
|- ( n e. _om -> ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) ) |
54 |
53
|
anabsi5 |
|- ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` n ) = <. n , x >. ) |
55 |
|
vex |
|- x e. _V |
56 |
28 55
|
opnzi |
|- <. n , x >. =/= (/) |
57 |
56
|
a1i |
|- ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> <. n , x >. =/= (/) ) |
58 |
54 57
|
eqnetrd |
|- ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> ( rec ( F , <. n , x >. ) ` n ) =/= (/) ) |
59 |
58
|
necomd |
|- ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> (/) =/= ( rec ( F , <. n , x >. ) ` n ) ) |
60 |
59
|
neneqd |
|- ( ( n e. _om /\ ( 1o e. n /\ -. x e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , x >. ) ` n ) ) |
61 |
15 26 60
|
chvarfv |
|- ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. (/) = ( rec ( F , <. n , y >. ) ` n ) ) |
62 |
61
|
intnand |
|- ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) |
63 |
62
|
adantl |
|- ( ( n = N /\ ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) -> -. ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) |
64 |
|
opeq1 |
|- ( n = N -> <. n , y >. = <. N , y >. ) |
65 |
|
rdgeq2 |
|- ( <. n , y >. = <. N , y >. -> rec ( F , <. n , y >. ) = rec ( F , <. N , y >. ) ) |
66 |
64 65
|
syl |
|- ( n = N -> rec ( F , <. n , y >. ) = rec ( F , <. N , y >. ) ) |
67 |
|
id |
|- ( n = N -> n = N ) |
68 |
66 67
|
fveq12d |
|- ( n = N -> ( rec ( F , <. n , y >. ) ` n ) = ( rec ( F , <. N , y >. ) ` N ) ) |
69 |
68
|
eqeq2d |
|- ( n = N -> ( (/) = ( rec ( F , <. n , y >. ) ` n ) <-> (/) = ( rec ( F , <. N , y >. ) ` N ) ) ) |
70 |
2 69
|
anbi12d |
|- ( n = N -> ( ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) <-> ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) ) ) |
71 |
70
|
abbidv |
|- ( n = N -> { y | ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) } = { y | ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) } ) |
72 |
1
|
dffinxpf |
|- ( U ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) } |
73 |
71 72
|
eqtr4di |
|- ( n = N -> { y | ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) } = ( U ^^ N ) ) |
74 |
73
|
eleq2d |
|- ( n = N -> ( y e. { y | ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) } <-> y e. ( U ^^ N ) ) ) |
75 |
|
abid |
|- ( y e. { y | ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) } <-> ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) |
76 |
74 75
|
bitr3di |
|- ( n = N -> ( y e. ( U ^^ N ) <-> ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) ) |
77 |
76
|
adantr |
|- ( ( n = N /\ ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) -> ( y e. ( U ^^ N ) <-> ( n e. _om /\ (/) = ( rec ( F , <. n , y >. ) ` n ) ) ) ) |
78 |
63 77
|
mtbird |
|- ( ( n = N /\ ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) ) -> -. y e. ( U ^^ N ) ) |
79 |
78
|
ex |
|- ( n = N -> ( ( n e. _om /\ ( 1o e. n /\ -. y e. ( _V X. U ) ) ) -> -. y e. ( U ^^ N ) ) ) |
80 |
5 79
|
syl5bi |
|- ( n = N -> ( ( ( n e. _om /\ 1o e. n ) /\ -. y e. ( _V X. U ) ) -> -. y e. ( U ^^ N ) ) ) |
81 |
80
|
expdimp |
|- ( ( n = N /\ ( n e. _om /\ 1o e. n ) ) -> ( -. y e. ( _V X. U ) -> -. y e. ( U ^^ N ) ) ) |
82 |
81
|
con4d |
|- ( ( n = N /\ ( n e. _om /\ 1o e. n ) ) -> ( y e. ( U ^^ N ) -> y e. ( _V X. U ) ) ) |
83 |
82
|
ssrdv |
|- ( ( n = N /\ ( n e. _om /\ 1o e. n ) ) -> ( U ^^ N ) C_ ( _V X. U ) ) |
84 |
83
|
ex |
|- ( n = N -> ( ( n e. _om /\ 1o e. n ) -> ( U ^^ N ) C_ ( _V X. U ) ) ) |
85 |
4 84
|
sylbird |
|- ( n = N -> ( ( N e. _om /\ 1o e. N ) -> ( U ^^ N ) C_ ( _V X. U ) ) ) |
86 |
85
|
vtocleg |
|- ( N e. _om -> ( ( N e. _om /\ 1o e. N ) -> ( U ^^ N ) C_ ( _V X. U ) ) ) |
87 |
86
|
anabsi5 |
|- ( ( N e. _om /\ 1o e. N ) -> ( U ^^ N ) C_ ( _V X. U ) ) |