Step |
Hyp |
Ref |
Expression |
1 |
|
finxpsuclem.1 |
|- F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
2 |
|
peano2 |
|- ( N e. _om -> suc N e. _om ) |
3 |
2
|
adantr |
|- ( ( N e. _om /\ 1o C_ N ) -> suc N e. _om ) |
4 |
|
1on |
|- 1o e. On |
5 |
4
|
onordi |
|- Ord 1o |
6 |
|
nnord |
|- ( N e. _om -> Ord N ) |
7 |
|
ordsseleq |
|- ( ( Ord 1o /\ Ord N ) -> ( 1o C_ N <-> ( 1o e. N \/ 1o = N ) ) ) |
8 |
5 6 7
|
sylancr |
|- ( N e. _om -> ( 1o C_ N <-> ( 1o e. N \/ 1o = N ) ) ) |
9 |
8
|
biimpa |
|- ( ( N e. _om /\ 1o C_ N ) -> ( 1o e. N \/ 1o = N ) ) |
10 |
|
elelsuc |
|- ( 1o e. N -> 1o e. suc N ) |
11 |
10
|
a1i |
|- ( N e. _om -> ( 1o e. N -> 1o e. suc N ) ) |
12 |
|
sucidg |
|- ( N e. _om -> N e. suc N ) |
13 |
|
eleq1 |
|- ( 1o = N -> ( 1o e. suc N <-> N e. suc N ) ) |
14 |
12 13
|
syl5ibrcom |
|- ( N e. _om -> ( 1o = N -> 1o e. suc N ) ) |
15 |
11 14
|
jaod |
|- ( N e. _om -> ( ( 1o e. N \/ 1o = N ) -> 1o e. suc N ) ) |
16 |
15
|
adantr |
|- ( ( N e. _om /\ 1o C_ N ) -> ( ( 1o e. N \/ 1o = N ) -> 1o e. suc N ) ) |
17 |
9 16
|
mpd |
|- ( ( N e. _om /\ 1o C_ N ) -> 1o e. suc N ) |
18 |
1
|
finxpreclem6 |
|- ( ( suc N e. _om /\ 1o e. suc N ) -> ( U ^^ suc N ) C_ ( _V X. U ) ) |
19 |
3 17 18
|
syl2anc |
|- ( ( N e. _om /\ 1o C_ N ) -> ( U ^^ suc N ) C_ ( _V X. U ) ) |
20 |
19
|
sselda |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( U ^^ suc N ) ) -> y e. ( _V X. U ) ) |
21 |
2
|
ad2antrr |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> suc N e. _om ) |
22 |
|
df-2o |
|- 2o = suc 1o |
23 |
|
ordsucsssuc |
|- ( ( Ord 1o /\ Ord N ) -> ( 1o C_ N <-> suc 1o C_ suc N ) ) |
24 |
5 6 23
|
sylancr |
|- ( N e. _om -> ( 1o C_ N <-> suc 1o C_ suc N ) ) |
25 |
24
|
biimpa |
|- ( ( N e. _om /\ 1o C_ N ) -> suc 1o C_ suc N ) |
26 |
22 25
|
eqsstrid |
|- ( ( N e. _om /\ 1o C_ N ) -> 2o C_ suc N ) |
27 |
26
|
adantr |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> 2o C_ suc N ) |
28 |
|
simpr |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> y e. ( _V X. U ) ) |
29 |
1
|
finxpreclem4 |
|- ( ( ( suc N e. _om /\ 2o C_ suc N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. suc N , y >. ) ` suc N ) = ( rec ( F , <. U. suc N , ( 1st ` y ) >. ) ` U. suc N ) ) |
30 |
21 27 28 29
|
syl21anc |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. suc N , y >. ) ` suc N ) = ( rec ( F , <. U. suc N , ( 1st ` y ) >. ) ` U. suc N ) ) |
31 |
|
ordunisuc |
|- ( Ord N -> U. suc N = N ) |
32 |
6 31
|
syl |
|- ( N e. _om -> U. suc N = N ) |
33 |
|
opeq1 |
|- ( U. suc N = N -> <. U. suc N , ( 1st ` y ) >. = <. N , ( 1st ` y ) >. ) |
34 |
|
rdgeq2 |
|- ( <. U. suc N , ( 1st ` y ) >. = <. N , ( 1st ` y ) >. -> rec ( F , <. U. suc N , ( 1st ` y ) >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) |
35 |
33 34
|
syl |
|- ( U. suc N = N -> rec ( F , <. U. suc N , ( 1st ` y ) >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) |
36 |
32 35
|
syl |
|- ( N e. _om -> rec ( F , <. U. suc N , ( 1st ` y ) >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) |
37 |
36 32
|
fveq12d |
|- ( N e. _om -> ( rec ( F , <. U. suc N , ( 1st ` y ) >. ) ` U. suc N ) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) |
38 |
37
|
ad2antrr |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. U. suc N , ( 1st ` y ) >. ) ` U. suc N ) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) |
39 |
30 38
|
eqtrd |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. suc N , y >. ) ` suc N ) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) |
40 |
39
|
eqeq2d |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) <-> (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) |
41 |
1
|
dffinxpf |
|- ( U ^^ suc N ) = { y | ( suc N e. _om /\ (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) } |
42 |
41
|
abeq2i |
|- ( y e. ( U ^^ suc N ) <-> ( suc N e. _om /\ (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) ) |
43 |
2
|
biantrurd |
|- ( N e. _om -> ( (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) <-> ( suc N e. _om /\ (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) ) ) |
44 |
42 43
|
bitr4id |
|- ( N e. _om -> ( y e. ( U ^^ suc N ) <-> (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) ) |
45 |
44
|
ad2antrr |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( y e. ( U ^^ suc N ) <-> (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) ) |
46 |
|
fvex |
|- ( 1st ` y ) e. _V |
47 |
|
opeq2 |
|- ( z = ( 1st ` y ) -> <. N , z >. = <. N , ( 1st ` y ) >. ) |
48 |
|
rdgeq2 |
|- ( <. N , z >. = <. N , ( 1st ` y ) >. -> rec ( F , <. N , z >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) |
49 |
47 48
|
syl |
|- ( z = ( 1st ` y ) -> rec ( F , <. N , z >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) |
50 |
49
|
fveq1d |
|- ( z = ( 1st ` y ) -> ( rec ( F , <. N , z >. ) ` N ) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) |
51 |
50
|
eqeq2d |
|- ( z = ( 1st ` y ) -> ( (/) = ( rec ( F , <. N , z >. ) ` N ) <-> (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) |
52 |
51
|
anbi2d |
|- ( z = ( 1st ` y ) -> ( ( N e. _om /\ (/) = ( rec ( F , <. N , z >. ) ` N ) ) <-> ( N e. _om /\ (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) ) |
53 |
1
|
dffinxpf |
|- ( U ^^ N ) = { z | ( N e. _om /\ (/) = ( rec ( F , <. N , z >. ) ` N ) ) } |
54 |
46 52 53
|
elab2 |
|- ( ( 1st ` y ) e. ( U ^^ N ) <-> ( N e. _om /\ (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) |
55 |
54
|
baib |
|- ( N e. _om -> ( ( 1st ` y ) e. ( U ^^ N ) <-> (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) |
56 |
55
|
ad2antrr |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( ( 1st ` y ) e. ( U ^^ N ) <-> (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) |
57 |
40 45 56
|
3bitr4d |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( y e. ( U ^^ suc N ) <-> ( 1st ` y ) e. ( U ^^ N ) ) ) |
58 |
57
|
biimpd |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( y e. ( U ^^ suc N ) -> ( 1st ` y ) e. ( U ^^ N ) ) ) |
59 |
58
|
impancom |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( U ^^ suc N ) ) -> ( y e. ( _V X. U ) -> ( 1st ` y ) e. ( U ^^ N ) ) ) |
60 |
20 59
|
mpd |
|- ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( U ^^ suc N ) ) -> ( 1st ` y ) e. ( U ^^ N ) ) |
61 |
60
|
ex |
|- ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) -> ( 1st ` y ) e. ( U ^^ N ) ) ) |
62 |
20
|
ex |
|- ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) -> y e. ( _V X. U ) ) ) |
63 |
61 62
|
jcad |
|- ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) -> ( ( 1st ` y ) e. ( U ^^ N ) /\ y e. ( _V X. U ) ) ) ) |
64 |
57
|
exbiri |
|- ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( _V X. U ) -> ( ( 1st ` y ) e. ( U ^^ N ) -> y e. ( U ^^ suc N ) ) ) ) |
65 |
64
|
impd |
|- ( ( N e. _om /\ 1o C_ N ) -> ( ( y e. ( _V X. U ) /\ ( 1st ` y ) e. ( U ^^ N ) ) -> y e. ( U ^^ suc N ) ) ) |
66 |
65
|
ancomsd |
|- ( ( N e. _om /\ 1o C_ N ) -> ( ( ( 1st ` y ) e. ( U ^^ N ) /\ y e. ( _V X. U ) ) -> y e. ( U ^^ suc N ) ) ) |
67 |
63 66
|
impbid |
|- ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) <-> ( ( 1st ` y ) e. ( U ^^ N ) /\ y e. ( _V X. U ) ) ) ) |
68 |
|
elxp8 |
|- ( y e. ( ( U ^^ N ) X. U ) <-> ( ( 1st ` y ) e. ( U ^^ N ) /\ y e. ( _V X. U ) ) ) |
69 |
67 68
|
bitr4di |
|- ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) <-> y e. ( ( U ^^ N ) X. U ) ) ) |
70 |
69
|
eqrdv |
|- ( ( N e. _om /\ 1o C_ N ) -> ( U ^^ suc N ) = ( ( U ^^ N ) X. U ) ) |