| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpsuclem.1 |  |-  F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 2 |  | peano2 |  |-  ( N e. _om -> suc N e. _om ) | 
						
							| 3 | 2 | adantr |  |-  ( ( N e. _om /\ 1o C_ N ) -> suc N e. _om ) | 
						
							| 4 |  | 1on |  |-  1o e. On | 
						
							| 5 | 4 | onordi |  |-  Ord 1o | 
						
							| 6 |  | nnord |  |-  ( N e. _om -> Ord N ) | 
						
							| 7 |  | ordsseleq |  |-  ( ( Ord 1o /\ Ord N ) -> ( 1o C_ N <-> ( 1o e. N \/ 1o = N ) ) ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( N e. _om -> ( 1o C_ N <-> ( 1o e. N \/ 1o = N ) ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( 1o e. N \/ 1o = N ) ) | 
						
							| 10 |  | elelsuc |  |-  ( 1o e. N -> 1o e. suc N ) | 
						
							| 11 | 10 | a1i |  |-  ( N e. _om -> ( 1o e. N -> 1o e. suc N ) ) | 
						
							| 12 |  | sucidg |  |-  ( N e. _om -> N e. suc N ) | 
						
							| 13 |  | eleq1 |  |-  ( 1o = N -> ( 1o e. suc N <-> N e. suc N ) ) | 
						
							| 14 | 12 13 | syl5ibrcom |  |-  ( N e. _om -> ( 1o = N -> 1o e. suc N ) ) | 
						
							| 15 | 11 14 | jaod |  |-  ( N e. _om -> ( ( 1o e. N \/ 1o = N ) -> 1o e. suc N ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( ( 1o e. N \/ 1o = N ) -> 1o e. suc N ) ) | 
						
							| 17 | 9 16 | mpd |  |-  ( ( N e. _om /\ 1o C_ N ) -> 1o e. suc N ) | 
						
							| 18 | 1 | finxpreclem6 |  |-  ( ( suc N e. _om /\ 1o e. suc N ) -> ( U ^^ suc N ) C_ ( _V X. U ) ) | 
						
							| 19 | 3 17 18 | syl2anc |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( U ^^ suc N ) C_ ( _V X. U ) ) | 
						
							| 20 | 19 | sselda |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( U ^^ suc N ) ) -> y e. ( _V X. U ) ) | 
						
							| 21 | 2 | ad2antrr |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> suc N e. _om ) | 
						
							| 22 |  | df-2o |  |-  2o = suc 1o | 
						
							| 23 |  | ordsucsssuc |  |-  ( ( Ord 1o /\ Ord N ) -> ( 1o C_ N <-> suc 1o C_ suc N ) ) | 
						
							| 24 | 5 6 23 | sylancr |  |-  ( N e. _om -> ( 1o C_ N <-> suc 1o C_ suc N ) ) | 
						
							| 25 | 24 | biimpa |  |-  ( ( N e. _om /\ 1o C_ N ) -> suc 1o C_ suc N ) | 
						
							| 26 | 22 25 | eqsstrid |  |-  ( ( N e. _om /\ 1o C_ N ) -> 2o C_ suc N ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> 2o C_ suc N ) | 
						
							| 28 |  | simpr |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> y e. ( _V X. U ) ) | 
						
							| 29 | 1 | finxpreclem4 |  |-  ( ( ( suc N e. _om /\ 2o C_ suc N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. suc N , y >. ) ` suc N ) = ( rec ( F , <. U. suc N , ( 1st ` y ) >. ) ` U. suc N ) ) | 
						
							| 30 | 21 27 28 29 | syl21anc |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. suc N , y >. ) ` suc N ) = ( rec ( F , <. U. suc N , ( 1st ` y ) >. ) ` U. suc N ) ) | 
						
							| 31 |  | ordunisuc |  |-  ( Ord N -> U. suc N = N ) | 
						
							| 32 | 6 31 | syl |  |-  ( N e. _om -> U. suc N = N ) | 
						
							| 33 |  | opeq1 |  |-  ( U. suc N = N -> <. U. suc N , ( 1st ` y ) >. = <. N , ( 1st ` y ) >. ) | 
						
							| 34 |  | rdgeq2 |  |-  ( <. U. suc N , ( 1st ` y ) >. = <. N , ( 1st ` y ) >. -> rec ( F , <. U. suc N , ( 1st ` y ) >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( U. suc N = N -> rec ( F , <. U. suc N , ( 1st ` y ) >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) | 
						
							| 36 | 32 35 | syl |  |-  ( N e. _om -> rec ( F , <. U. suc N , ( 1st ` y ) >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) | 
						
							| 37 | 36 32 | fveq12d |  |-  ( N e. _om -> ( rec ( F , <. U. suc N , ( 1st ` y ) >. ) ` U. suc N ) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) | 
						
							| 38 | 37 | ad2antrr |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. U. suc N , ( 1st ` y ) >. ) ` U. suc N ) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) | 
						
							| 39 | 30 38 | eqtrd |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( rec ( F , <. suc N , y >. ) ` suc N ) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) <-> (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) | 
						
							| 41 | 1 | dffinxpf |  |-  ( U ^^ suc N ) = { y | ( suc N e. _om /\ (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) } | 
						
							| 42 | 41 | eqabri |  |-  ( y e. ( U ^^ suc N ) <-> ( suc N e. _om /\ (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) ) | 
						
							| 43 | 2 | biantrurd |  |-  ( N e. _om -> ( (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) <-> ( suc N e. _om /\ (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) ) ) | 
						
							| 44 | 42 43 | bitr4id |  |-  ( N e. _om -> ( y e. ( U ^^ suc N ) <-> (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) ) | 
						
							| 45 | 44 | ad2antrr |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( y e. ( U ^^ suc N ) <-> (/) = ( rec ( F , <. suc N , y >. ) ` suc N ) ) ) | 
						
							| 46 |  | fvex |  |-  ( 1st ` y ) e. _V | 
						
							| 47 |  | opeq2 |  |-  ( z = ( 1st ` y ) -> <. N , z >. = <. N , ( 1st ` y ) >. ) | 
						
							| 48 |  | rdgeq2 |  |-  ( <. N , z >. = <. N , ( 1st ` y ) >. -> rec ( F , <. N , z >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) | 
						
							| 49 | 47 48 | syl |  |-  ( z = ( 1st ` y ) -> rec ( F , <. N , z >. ) = rec ( F , <. N , ( 1st ` y ) >. ) ) | 
						
							| 50 | 49 | fveq1d |  |-  ( z = ( 1st ` y ) -> ( rec ( F , <. N , z >. ) ` N ) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) | 
						
							| 51 | 50 | eqeq2d |  |-  ( z = ( 1st ` y ) -> ( (/) = ( rec ( F , <. N , z >. ) ` N ) <-> (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) | 
						
							| 52 | 51 | anbi2d |  |-  ( z = ( 1st ` y ) -> ( ( N e. _om /\ (/) = ( rec ( F , <. N , z >. ) ` N ) ) <-> ( N e. _om /\ (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) ) | 
						
							| 53 | 1 | dffinxpf |  |-  ( U ^^ N ) = { z | ( N e. _om /\ (/) = ( rec ( F , <. N , z >. ) ` N ) ) } | 
						
							| 54 | 46 52 53 | elab2 |  |-  ( ( 1st ` y ) e. ( U ^^ N ) <-> ( N e. _om /\ (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) | 
						
							| 55 | 54 | baib |  |-  ( N e. _om -> ( ( 1st ` y ) e. ( U ^^ N ) <-> (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) | 
						
							| 56 | 55 | ad2antrr |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( ( 1st ` y ) e. ( U ^^ N ) <-> (/) = ( rec ( F , <. N , ( 1st ` y ) >. ) ` N ) ) ) | 
						
							| 57 | 40 45 56 | 3bitr4d |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( y e. ( U ^^ suc N ) <-> ( 1st ` y ) e. ( U ^^ N ) ) ) | 
						
							| 58 | 57 | biimpd |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( _V X. U ) ) -> ( y e. ( U ^^ suc N ) -> ( 1st ` y ) e. ( U ^^ N ) ) ) | 
						
							| 59 | 58 | impancom |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( U ^^ suc N ) ) -> ( y e. ( _V X. U ) -> ( 1st ` y ) e. ( U ^^ N ) ) ) | 
						
							| 60 | 20 59 | mpd |  |-  ( ( ( N e. _om /\ 1o C_ N ) /\ y e. ( U ^^ suc N ) ) -> ( 1st ` y ) e. ( U ^^ N ) ) | 
						
							| 61 | 60 | ex |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) -> ( 1st ` y ) e. ( U ^^ N ) ) ) | 
						
							| 62 | 20 | ex |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) -> y e. ( _V X. U ) ) ) | 
						
							| 63 | 61 62 | jcad |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) -> ( ( 1st ` y ) e. ( U ^^ N ) /\ y e. ( _V X. U ) ) ) ) | 
						
							| 64 | 57 | exbiri |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( _V X. U ) -> ( ( 1st ` y ) e. ( U ^^ N ) -> y e. ( U ^^ suc N ) ) ) ) | 
						
							| 65 | 64 | impd |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( ( y e. ( _V X. U ) /\ ( 1st ` y ) e. ( U ^^ N ) ) -> y e. ( U ^^ suc N ) ) ) | 
						
							| 66 | 65 | ancomsd |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( ( ( 1st ` y ) e. ( U ^^ N ) /\ y e. ( _V X. U ) ) -> y e. ( U ^^ suc N ) ) ) | 
						
							| 67 | 63 66 | impbid |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) <-> ( ( 1st ` y ) e. ( U ^^ N ) /\ y e. ( _V X. U ) ) ) ) | 
						
							| 68 |  | elxp8 |  |-  ( y e. ( ( U ^^ N ) X. U ) <-> ( ( 1st ` y ) e. ( U ^^ N ) /\ y e. ( _V X. U ) ) ) | 
						
							| 69 | 67 68 | bitr4di |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( y e. ( U ^^ suc N ) <-> y e. ( ( U ^^ N ) X. U ) ) ) | 
						
							| 70 | 69 | eqrdv |  |-  ( ( N e. _om /\ 1o C_ N ) -> ( U ^^ suc N ) = ( ( U ^^ N ) X. U ) ) |