| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpsuclem.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 2 |  | peano2 | ⊢ ( 𝑁  ∈  ω  →  suc  𝑁  ∈  ω ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  suc  𝑁  ∈  ω ) | 
						
							| 4 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 5 | 4 | onordi | ⊢ Ord  1o | 
						
							| 6 |  | nnord | ⊢ ( 𝑁  ∈  ω  →  Ord  𝑁 ) | 
						
							| 7 |  | ordsseleq | ⊢ ( ( Ord  1o  ∧  Ord  𝑁 )  →  ( 1o  ⊆  𝑁  ↔  ( 1o  ∈  𝑁  ∨  1o  =  𝑁 ) ) ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( 𝑁  ∈  ω  →  ( 1o  ⊆  𝑁  ↔  ( 1o  ∈  𝑁  ∨  1o  =  𝑁 ) ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 1o  ∈  𝑁  ∨  1o  =  𝑁 ) ) | 
						
							| 10 |  | elelsuc | ⊢ ( 1o  ∈  𝑁  →  1o  ∈  suc  𝑁 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑁  ∈  ω  →  ( 1o  ∈  𝑁  →  1o  ∈  suc  𝑁 ) ) | 
						
							| 12 |  | sucidg | ⊢ ( 𝑁  ∈  ω  →  𝑁  ∈  suc  𝑁 ) | 
						
							| 13 |  | eleq1 | ⊢ ( 1o  =  𝑁  →  ( 1o  ∈  suc  𝑁  ↔  𝑁  ∈  suc  𝑁 ) ) | 
						
							| 14 | 12 13 | syl5ibrcom | ⊢ ( 𝑁  ∈  ω  →  ( 1o  =  𝑁  →  1o  ∈  suc  𝑁 ) ) | 
						
							| 15 | 11 14 | jaod | ⊢ ( 𝑁  ∈  ω  →  ( ( 1o  ∈  𝑁  ∨  1o  =  𝑁 )  →  1o  ∈  suc  𝑁 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( ( 1o  ∈  𝑁  ∨  1o  =  𝑁 )  →  1o  ∈  suc  𝑁 ) ) | 
						
							| 17 | 9 16 | mpd | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  1o  ∈  suc  𝑁 ) | 
						
							| 18 | 1 | finxpreclem6 | ⊢ ( ( suc  𝑁  ∈  ω  ∧  1o  ∈  suc  𝑁 )  →  ( 𝑈 ↑↑ suc  𝑁 )  ⊆  ( V  ×  𝑈 ) ) | 
						
							| 19 | 3 17 18 | syl2anc | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 𝑈 ↑↑ suc  𝑁 )  ⊆  ( V  ×  𝑈 ) ) | 
						
							| 20 | 19 | sselda | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 ) )  →  𝑦  ∈  ( V  ×  𝑈 ) ) | 
						
							| 21 | 2 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  suc  𝑁  ∈  ω ) | 
						
							| 22 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 23 |  | ordsucsssuc | ⊢ ( ( Ord  1o  ∧  Ord  𝑁 )  →  ( 1o  ⊆  𝑁  ↔  suc  1o  ⊆  suc  𝑁 ) ) | 
						
							| 24 | 5 6 23 | sylancr | ⊢ ( 𝑁  ∈  ω  →  ( 1o  ⊆  𝑁  ↔  suc  1o  ⊆  suc  𝑁 ) ) | 
						
							| 25 | 24 | biimpa | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  suc  1o  ⊆  suc  𝑁 ) | 
						
							| 26 | 22 25 | eqsstrid | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  2o  ⊆  suc  𝑁 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  2o  ⊆  suc  𝑁 ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  𝑦  ∈  ( V  ×  𝑈 ) ) | 
						
							| 29 | 1 | finxpreclem4 | ⊢ ( ( ( suc  𝑁  ∈  ω  ∧  2o  ⊆  suc  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 )  =  ( rec ( 𝐹 ,  〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∪  suc  𝑁 ) ) | 
						
							| 30 | 21 27 28 29 | syl21anc | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 )  =  ( rec ( 𝐹 ,  〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∪  suc  𝑁 ) ) | 
						
							| 31 |  | ordunisuc | ⊢ ( Ord  𝑁  →  ∪  suc  𝑁  =  𝑁 ) | 
						
							| 32 | 6 31 | syl | ⊢ ( 𝑁  ∈  ω  →  ∪  suc  𝑁  =  𝑁 ) | 
						
							| 33 |  | opeq1 | ⊢ ( ∪  suc  𝑁  =  𝑁  →  〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉  =  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) | 
						
							| 34 |  | rdgeq2 | ⊢ ( 〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉  =  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉  →  rec ( 𝐹 ,  〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 )  =  rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ∪  suc  𝑁  =  𝑁  →  rec ( 𝐹 ,  〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 )  =  rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ) | 
						
							| 36 | 32 35 | syl | ⊢ ( 𝑁  ∈  ω  →  rec ( 𝐹 ,  〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 )  =  rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ) | 
						
							| 37 | 36 32 | fveq12d | ⊢ ( 𝑁  ∈  ω  →  ( rec ( 𝐹 ,  〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∪  suc  𝑁 )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) | 
						
							| 38 | 37 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 ∪  suc  𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ ∪  suc  𝑁 )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) | 
						
							| 39 | 30 38 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) | 
						
							| 40 | 39 | eqeq2d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( ∅  =  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 )  ↔  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 41 | 1 | dffinxpf | ⊢ ( 𝑈 ↑↑ suc  𝑁 )  =  { 𝑦  ∣  ( suc  𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 ) ) } | 
						
							| 42 | 41 | eqabri | ⊢ ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  ↔  ( suc  𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 ) ) ) | 
						
							| 43 | 2 | biantrurd | ⊢ ( 𝑁  ∈  ω  →  ( ∅  =  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 )  ↔  ( suc  𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 ) ) ) ) | 
						
							| 44 | 42 43 | bitr4id | ⊢ ( 𝑁  ∈  ω  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  ↔  ∅  =  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 ) ) ) | 
						
							| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  ↔  ∅  =  ( rec ( 𝐹 ,  〈 suc  𝑁 ,  𝑦 〉 ) ‘ suc  𝑁 ) ) ) | 
						
							| 46 |  | fvex | ⊢ ( 1st  ‘ 𝑦 )  ∈  V | 
						
							| 47 |  | opeq2 | ⊢ ( 𝑧  =  ( 1st  ‘ 𝑦 )  →  〈 𝑁 ,  𝑧 〉  =  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) | 
						
							| 48 |  | rdgeq2 | ⊢ ( 〈 𝑁 ,  𝑧 〉  =  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉  →  rec ( 𝐹 ,  〈 𝑁 ,  𝑧 〉 )  =  rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝑧  =  ( 1st  ‘ 𝑦 )  →  rec ( 𝐹 ,  〈 𝑁 ,  𝑧 〉 )  =  rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ) | 
						
							| 50 | 49 | fveq1d | ⊢ ( 𝑧  =  ( 1st  ‘ 𝑦 )  →  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑧 〉 ) ‘ 𝑁 )  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) | 
						
							| 51 | 50 | eqeq2d | ⊢ ( 𝑧  =  ( 1st  ‘ 𝑦 )  →  ( ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑧 〉 ) ‘ 𝑁 )  ↔  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 52 | 51 | anbi2d | ⊢ ( 𝑧  =  ( 1st  ‘ 𝑦 )  →  ( ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑧 〉 ) ‘ 𝑁 ) )  ↔  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) ) | 
						
							| 53 | 1 | dffinxpf | ⊢ ( 𝑈 ↑↑ 𝑁 )  =  { 𝑧  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑧 〉 ) ‘ 𝑁 ) ) } | 
						
							| 54 | 46 52 53 | elab2 | ⊢ ( ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 )  ↔  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 55 | 54 | baib | ⊢ ( 𝑁  ∈  ω  →  ( ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 )  ↔  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 )  ↔  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  ( 1st  ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 57 | 40 45 56 | 3bitr4d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  ↔  ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 ) ) ) | 
						
							| 58 | 57 | biimpd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  →  ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 ) ) ) | 
						
							| 59 | 58 | impancom | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 ) )  →  ( 𝑦  ∈  ( V  ×  𝑈 )  →  ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 ) ) ) | 
						
							| 60 | 20 59 | mpd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  ∧  𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 ) )  →  ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 ) ) | 
						
							| 61 | 60 | ex | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  →  ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 ) ) ) | 
						
							| 62 | 20 | ex | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  →  𝑦  ∈  ( V  ×  𝑈 ) ) ) | 
						
							| 63 | 61 62 | jcad | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  →  ( ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) ) ) ) | 
						
							| 64 | 57 | exbiri | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 𝑦  ∈  ( V  ×  𝑈 )  →  ( ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 )  →  𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 ) ) ) ) | 
						
							| 65 | 64 | impd | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( ( 𝑦  ∈  ( V  ×  𝑈 )  ∧  ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 ) )  →  𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 ) ) ) | 
						
							| 66 | 65 | ancomsd | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( ( ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) )  →  𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 ) ) ) | 
						
							| 67 | 63 66 | impbid | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  ↔  ( ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) ) ) ) | 
						
							| 68 |  | elxp8 | ⊢ ( 𝑦  ∈  ( ( 𝑈 ↑↑ 𝑁 )  ×  𝑈 )  ↔  ( ( 1st  ‘ 𝑦 )  ∈  ( 𝑈 ↑↑ 𝑁 )  ∧  𝑦  ∈  ( V  ×  𝑈 ) ) ) | 
						
							| 69 | 67 68 | bitr4di | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 𝑦  ∈  ( 𝑈 ↑↑ suc  𝑁 )  ↔  𝑦  ∈  ( ( 𝑈 ↑↑ 𝑁 )  ×  𝑈 ) ) ) | 
						
							| 70 | 69 | eqrdv | ⊢ ( ( 𝑁  ∈  ω  ∧  1o  ⊆  𝑁 )  →  ( 𝑈 ↑↑ suc  𝑁 )  =  ( ( 𝑈 ↑↑ 𝑁 )  ×  𝑈 ) ) |