Step |
Hyp |
Ref |
Expression |
1 |
|
finxpsuclem.1 |
⊢ 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
2 |
|
peano2 |
⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) |
3 |
2
|
adantr |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → suc 𝑁 ∈ ω ) |
4 |
|
1on |
⊢ 1o ∈ On |
5 |
4
|
onordi |
⊢ Ord 1o |
6 |
|
nnord |
⊢ ( 𝑁 ∈ ω → Ord 𝑁 ) |
7 |
|
ordsseleq |
⊢ ( ( Ord 1o ∧ Ord 𝑁 ) → ( 1o ⊆ 𝑁 ↔ ( 1o ∈ 𝑁 ∨ 1o = 𝑁 ) ) ) |
8 |
5 6 7
|
sylancr |
⊢ ( 𝑁 ∈ ω → ( 1o ⊆ 𝑁 ↔ ( 1o ∈ 𝑁 ∨ 1o = 𝑁 ) ) ) |
9 |
8
|
biimpa |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 1o ∈ 𝑁 ∨ 1o = 𝑁 ) ) |
10 |
|
elelsuc |
⊢ ( 1o ∈ 𝑁 → 1o ∈ suc 𝑁 ) |
11 |
10
|
a1i |
⊢ ( 𝑁 ∈ ω → ( 1o ∈ 𝑁 → 1o ∈ suc 𝑁 ) ) |
12 |
|
sucidg |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ suc 𝑁 ) |
13 |
|
eleq1 |
⊢ ( 1o = 𝑁 → ( 1o ∈ suc 𝑁 ↔ 𝑁 ∈ suc 𝑁 ) ) |
14 |
12 13
|
syl5ibrcom |
⊢ ( 𝑁 ∈ ω → ( 1o = 𝑁 → 1o ∈ suc 𝑁 ) ) |
15 |
11 14
|
jaod |
⊢ ( 𝑁 ∈ ω → ( ( 1o ∈ 𝑁 ∨ 1o = 𝑁 ) → 1o ∈ suc 𝑁 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( ( 1o ∈ 𝑁 ∨ 1o = 𝑁 ) → 1o ∈ suc 𝑁 ) ) |
17 |
9 16
|
mpd |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → 1o ∈ suc 𝑁 ) |
18 |
1
|
finxpreclem6 |
⊢ ( ( suc 𝑁 ∈ ω ∧ 1o ∈ suc 𝑁 ) → ( 𝑈 ↑↑ suc 𝑁 ) ⊆ ( V × 𝑈 ) ) |
19 |
3 17 18
|
syl2anc |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑈 ↑↑ suc 𝑁 ) ⊆ ( V × 𝑈 ) ) |
20 |
19
|
sselda |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ) → 𝑦 ∈ ( V × 𝑈 ) ) |
21 |
2
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → suc 𝑁 ∈ ω ) |
22 |
|
df-2o |
⊢ 2o = suc 1o |
23 |
|
ordsucsssuc |
⊢ ( ( Ord 1o ∧ Ord 𝑁 ) → ( 1o ⊆ 𝑁 ↔ suc 1o ⊆ suc 𝑁 ) ) |
24 |
5 6 23
|
sylancr |
⊢ ( 𝑁 ∈ ω → ( 1o ⊆ 𝑁 ↔ suc 1o ⊆ suc 𝑁 ) ) |
25 |
24
|
biimpa |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → suc 1o ⊆ suc 𝑁 ) |
26 |
22 25
|
eqsstrid |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → 2o ⊆ suc 𝑁 ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → 2o ⊆ suc 𝑁 ) |
28 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → 𝑦 ∈ ( V × 𝑈 ) ) |
29 |
1
|
finxpreclem4 |
⊢ ( ( ( suc 𝑁 ∈ ω ∧ 2o ⊆ suc 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) = ( rec ( 𝐹 , 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∪ suc 𝑁 ) ) |
30 |
21 27 28 29
|
syl21anc |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) = ( rec ( 𝐹 , 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∪ suc 𝑁 ) ) |
31 |
|
ordunisuc |
⊢ ( Ord 𝑁 → ∪ suc 𝑁 = 𝑁 ) |
32 |
6 31
|
syl |
⊢ ( 𝑁 ∈ ω → ∪ suc 𝑁 = 𝑁 ) |
33 |
|
opeq1 |
⊢ ( ∪ suc 𝑁 = 𝑁 → 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 = 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) |
34 |
|
rdgeq2 |
⊢ ( 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 = 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 → rec ( 𝐹 , 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) = rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ) |
35 |
33 34
|
syl |
⊢ ( ∪ suc 𝑁 = 𝑁 → rec ( 𝐹 , 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) = rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ) |
36 |
32 35
|
syl |
⊢ ( 𝑁 ∈ ω → rec ( 𝐹 , 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) = rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ) |
37 |
36 32
|
fveq12d |
⊢ ( 𝑁 ∈ ω → ( rec ( 𝐹 , 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∪ suc 𝑁 ) = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 ∪ suc 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ ∪ suc 𝑁 ) = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) |
39 |
30 38
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) |
40 |
39
|
eqeq2d |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( ∅ = ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) ↔ ∅ = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) |
41 |
1
|
dffinxpf |
⊢ ( 𝑈 ↑↑ suc 𝑁 ) = { 𝑦 ∣ ( suc 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) ) } |
42 |
41
|
abeq2i |
⊢ ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ↔ ( suc 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) ) ) |
43 |
2
|
biantrurd |
⊢ ( 𝑁 ∈ ω → ( ∅ = ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) ↔ ( suc 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) ) ) ) |
44 |
42 43
|
bitr4id |
⊢ ( 𝑁 ∈ ω → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ↔ ∅ = ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) ) ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ↔ ∅ = ( rec ( 𝐹 , 〈 suc 𝑁 , 𝑦 〉 ) ‘ suc 𝑁 ) ) ) |
46 |
|
fvex |
⊢ ( 1st ‘ 𝑦 ) ∈ V |
47 |
|
opeq2 |
⊢ ( 𝑧 = ( 1st ‘ 𝑦 ) → 〈 𝑁 , 𝑧 〉 = 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) |
48 |
|
rdgeq2 |
⊢ ( 〈 𝑁 , 𝑧 〉 = 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 → rec ( 𝐹 , 〈 𝑁 , 𝑧 〉 ) = rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ) |
49 |
47 48
|
syl |
⊢ ( 𝑧 = ( 1st ‘ 𝑦 ) → rec ( 𝐹 , 〈 𝑁 , 𝑧 〉 ) = rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ) |
50 |
49
|
fveq1d |
⊢ ( 𝑧 = ( 1st ‘ 𝑦 ) → ( rec ( 𝐹 , 〈 𝑁 , 𝑧 〉 ) ‘ 𝑁 ) = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) |
51 |
50
|
eqeq2d |
⊢ ( 𝑧 = ( 1st ‘ 𝑦 ) → ( ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑧 〉 ) ‘ 𝑁 ) ↔ ∅ = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) |
52 |
51
|
anbi2d |
⊢ ( 𝑧 = ( 1st ‘ 𝑦 ) → ( ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑧 〉 ) ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) ) |
53 |
1
|
dffinxpf |
⊢ ( 𝑈 ↑↑ 𝑁 ) = { 𝑧 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑧 〉 ) ‘ 𝑁 ) ) } |
54 |
46 52 53
|
elab2 |
⊢ ( ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ↔ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) |
55 |
54
|
baib |
⊢ ( 𝑁 ∈ ω → ( ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ↔ ∅ = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ↔ ∅ = ( rec ( 𝐹 , 〈 𝑁 , ( 1st ‘ 𝑦 ) 〉 ) ‘ 𝑁 ) ) ) |
57 |
40 45 56
|
3bitr4d |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ↔ ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ) ) |
58 |
57
|
biimpd |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) → ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ) ) |
59 |
58
|
impancom |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ) → ( 𝑦 ∈ ( V × 𝑈 ) → ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ) ) |
60 |
20 59
|
mpd |
⊢ ( ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ∧ 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ) → ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ) |
61 |
60
|
ex |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) → ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ) ) |
62 |
20
|
ex |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) → 𝑦 ∈ ( V × 𝑈 ) ) ) |
63 |
61 62
|
jcad |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) → ( ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) ) ) |
64 |
57
|
exbiri |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑦 ∈ ( V × 𝑈 ) → ( ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) → 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ) ) ) |
65 |
64
|
impd |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( ( 𝑦 ∈ ( V × 𝑈 ) ∧ ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ) → 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ) ) |
66 |
65
|
ancomsd |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( ( ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) → 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ) ) |
67 |
63 66
|
impbid |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ↔ ( ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) ) ) |
68 |
|
elxp8 |
⊢ ( 𝑦 ∈ ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) ↔ ( ( 1st ‘ 𝑦 ) ∈ ( 𝑈 ↑↑ 𝑁 ) ∧ 𝑦 ∈ ( V × 𝑈 ) ) ) |
69 |
67 68
|
bitr4di |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑦 ∈ ( 𝑈 ↑↑ suc 𝑁 ) ↔ 𝑦 ∈ ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) ) ) |
70 |
69
|
eqrdv |
⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑈 ↑↑ suc 𝑁 ) = ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) ) |