Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | finxpsuc | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( 𝑈 ↑↑ suc 𝑁 ) = ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord | ⊢ ( 𝑁 ∈ ω → Ord 𝑁 ) | |
2 | ordge1n0 | ⊢ ( Ord 𝑁 → ( 1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅ ) ) | |
3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ω → ( 1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅ ) ) |
4 | 3 | biimprd | ⊢ ( 𝑁 ∈ ω → ( 𝑁 ≠ ∅ → 1o ⊆ 𝑁 ) ) |
5 | 4 | imdistani | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) ) |
6 | eqid | ⊢ ( 𝑦 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑦 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑦 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑦 , 𝑥 〉 ) ) ) = ( 𝑦 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑦 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑦 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑦 , 𝑥 〉 ) ) ) | |
7 | 6 | finxpsuclem | ⊢ ( ( 𝑁 ∈ ω ∧ 1o ⊆ 𝑁 ) → ( 𝑈 ↑↑ suc 𝑁 ) = ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) ) |
8 | 5 7 | syl | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( 𝑈 ↑↑ suc 𝑁 ) = ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) ) |