Metamath Proof Explorer


Theorem finxpsuc

Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxpsuc ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( 𝑈 ↑↑ suc 𝑁 ) = ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) )

Proof

Step Hyp Ref Expression
1 nnord ( 𝑁 ∈ ω → Ord 𝑁 )
2 ordge1n0 ( Ord 𝑁 → ( 1o𝑁𝑁 ≠ ∅ ) )
3 1 2 syl ( 𝑁 ∈ ω → ( 1o𝑁𝑁 ≠ ∅ ) )
4 3 biimprd ( 𝑁 ∈ ω → ( 𝑁 ≠ ∅ → 1o𝑁 ) )
5 4 imdistani ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( 𝑁 ∈ ω ∧ 1o𝑁 ) )
6 eqid ( 𝑦 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑦 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑦 , ( 1st𝑥 ) ⟩ , ⟨ 𝑦 , 𝑥 ⟩ ) ) ) = ( 𝑦 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑦 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑦 , ( 1st𝑥 ) ⟩ , ⟨ 𝑦 , 𝑥 ⟩ ) ) )
7 6 finxpsuclem ( ( 𝑁 ∈ ω ∧ 1o𝑁 ) → ( 𝑈 ↑↑ suc 𝑁 ) = ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) )
8 5 7 syl ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( 𝑈 ↑↑ suc 𝑁 ) = ( ( 𝑈 ↑↑ 𝑁 ) × 𝑈 ) )