Metamath Proof Explorer


Theorem finxp2o

Description: The value of Cartesian exponentiation at two. (Contributed by ML, 19-Oct-2020)

Ref Expression
Assertion finxp2o ( 𝑈 ↑↑ 2o ) = ( 𝑈 × 𝑈 )

Proof

Step Hyp Ref Expression
1 df-2o 2o = suc 1o
2 finxpeq2 ( 2o = suc 1o → ( 𝑈 ↑↑ 2o ) = ( 𝑈 ↑↑ suc 1o ) )
3 1 2 ax-mp ( 𝑈 ↑↑ 2o ) = ( 𝑈 ↑↑ suc 1o )
4 1onn 1o ∈ ω
5 1n0 1o ≠ ∅
6 finxpsuc ( ( 1o ∈ ω ∧ 1o ≠ ∅ ) → ( 𝑈 ↑↑ suc 1o ) = ( ( 𝑈 ↑↑ 1o ) × 𝑈 ) )
7 4 5 6 mp2an ( 𝑈 ↑↑ suc 1o ) = ( ( 𝑈 ↑↑ 1o ) × 𝑈 )
8 finxp1o ( 𝑈 ↑↑ 1o ) = 𝑈
9 8 xpeq1i ( ( 𝑈 ↑↑ 1o ) × 𝑈 ) = ( 𝑈 × 𝑈 )
10 3 7 9 3eqtri ( 𝑈 ↑↑ 2o ) = ( 𝑈 × 𝑈 )