Metamath Proof Explorer


Theorem finxp2o

Description: The value of Cartesian exponentiation at two. (Contributed by ML, 19-Oct-2020)

Ref Expression
Assertion finxp2o
|- ( U ^^ 2o ) = ( U X. U )

Proof

Step Hyp Ref Expression
1 df-2o
 |-  2o = suc 1o
2 finxpeq2
 |-  ( 2o = suc 1o -> ( U ^^ 2o ) = ( U ^^ suc 1o ) )
3 1 2 ax-mp
 |-  ( U ^^ 2o ) = ( U ^^ suc 1o )
4 1onn
 |-  1o e. _om
5 1n0
 |-  1o =/= (/)
6 finxpsuc
 |-  ( ( 1o e. _om /\ 1o =/= (/) ) -> ( U ^^ suc 1o ) = ( ( U ^^ 1o ) X. U ) )
7 4 5 6 mp2an
 |-  ( U ^^ suc 1o ) = ( ( U ^^ 1o ) X. U )
8 finxp1o
 |-  ( U ^^ 1o ) = U
9 8 xpeq1i
 |-  ( ( U ^^ 1o ) X. U ) = ( U X. U )
10 3 7 9 3eqtri
 |-  ( U ^^ 2o ) = ( U X. U )