Metamath Proof Explorer


Theorem finxp3o

Description: The value of Cartesian exponentiation at three. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxp3o
|- ( U ^^ 3o ) = ( ( U X. U ) X. U )

Proof

Step Hyp Ref Expression
1 df-3o
 |-  3o = suc 2o
2 finxpeq2
 |-  ( 3o = suc 2o -> ( U ^^ 3o ) = ( U ^^ suc 2o ) )
3 1 2 ax-mp
 |-  ( U ^^ 3o ) = ( U ^^ suc 2o )
4 2onn
 |-  2o e. _om
5 2on0
 |-  2o =/= (/)
6 finxpsuc
 |-  ( ( 2o e. _om /\ 2o =/= (/) ) -> ( U ^^ suc 2o ) = ( ( U ^^ 2o ) X. U ) )
7 4 5 6 mp2an
 |-  ( U ^^ suc 2o ) = ( ( U ^^ 2o ) X. U )
8 finxp2o
 |-  ( U ^^ 2o ) = ( U X. U )
9 8 xpeq1i
 |-  ( ( U ^^ 2o ) X. U ) = ( ( U X. U ) X. U )
10 3 7 9 3eqtri
 |-  ( U ^^ 3o ) = ( ( U X. U ) X. U )