Metamath Proof Explorer


Theorem finxp3o

Description: The value of Cartesian exponentiation at three. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxp3o ( 𝑈 ↑↑ 3o ) = ( ( 𝑈 × 𝑈 ) × 𝑈 )

Proof

Step Hyp Ref Expression
1 df-3o 3o = suc 2o
2 finxpeq2 ( 3o = suc 2o → ( 𝑈 ↑↑ 3o ) = ( 𝑈 ↑↑ suc 2o ) )
3 1 2 ax-mp ( 𝑈 ↑↑ 3o ) = ( 𝑈 ↑↑ suc 2o )
4 2onn 2o ∈ ω
5 2on0 2o ≠ ∅
6 finxpsuc ( ( 2o ∈ ω ∧ 2o ≠ ∅ ) → ( 𝑈 ↑↑ suc 2o ) = ( ( 𝑈 ↑↑ 2o ) × 𝑈 ) )
7 4 5 6 mp2an ( 𝑈 ↑↑ suc 2o ) = ( ( 𝑈 ↑↑ 2o ) × 𝑈 )
8 finxp2o ( 𝑈 ↑↑ 2o ) = ( 𝑈 × 𝑈 )
9 8 xpeq1i ( ( 𝑈 ↑↑ 2o ) × 𝑈 ) = ( ( 𝑈 × 𝑈 ) × 𝑈 )
10 3 7 9 3eqtri ( 𝑈 ↑↑ 3o ) = ( ( 𝑈 × 𝑈 ) × 𝑈 )