| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) )  →  𝑁  ∈  ω ) | 
						
							| 2 | 1 | con3i | ⊢ ( ¬  𝑁  ∈  ω  →  ¬  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 3 |  | abid | ⊢ ( 𝑦  ∈  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) }  ↔  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 4 | 2 3 | sylnibr | ⊢ ( ¬  𝑁  ∈  ω  →  ¬  𝑦  ∈  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } ) | 
						
							| 5 |  | df-finxp | ⊢ ( 𝑈 ↑↑ 𝑁 )  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 6 | 5 | eleq2i | ⊢ ( 𝑦  ∈  ( 𝑈 ↑↑ 𝑁 )  ↔  𝑦  ∈  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } ) | 
						
							| 7 | 4 6 | sylnibr | ⊢ ( ¬  𝑁  ∈  ω  →  ¬  𝑦  ∈  ( 𝑈 ↑↑ 𝑁 ) ) | 
						
							| 8 | 7 | eq0rdv | ⊢ ( ¬  𝑁  ∈  ω  →  ( 𝑈 ↑↑ 𝑁 )  =  ∅ ) |