Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) → 𝑁 ∈ ω ) |
2 |
1
|
con3i |
⊢ ( ¬ 𝑁 ∈ ω → ¬ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) |
3 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } ↔ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) |
4 |
2 3
|
sylnibr |
⊢ ( ¬ 𝑁 ∈ ω → ¬ 𝑦 ∈ { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } ) |
5 |
|
df-finxp |
⊢ ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
6 |
5
|
eleq2i |
⊢ ( 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ↔ 𝑦 ∈ { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } ) |
7 |
4 6
|
sylnibr |
⊢ ( ¬ 𝑁 ∈ ω → ¬ 𝑦 ∈ ( 𝑈 ↑↑ 𝑁 ) ) |
8 |
7
|
eq0rdv |
⊢ ( ¬ 𝑁 ∈ ω → ( 𝑈 ↑↑ 𝑁 ) = ∅ ) |