Step |
Hyp |
Ref |
Expression |
1 |
|
finxpeq2 |
⊢ ( 𝑛 = ∅ → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ ∅ ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑛 = ∅ → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ ∅ ) = ∅ ) ) |
3 |
|
finxpeq2 |
⊢ ( 𝑛 = 𝑚 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ 𝑚 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ 𝑚 ) = ∅ ) ) |
5 |
|
finxpeq2 |
⊢ ( 𝑛 = suc 𝑚 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ suc 𝑚 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑛 = suc 𝑚 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ suc 𝑚 ) = ∅ ) ) |
7 |
|
finxpeq2 |
⊢ ( 𝑛 = 𝑁 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ 𝑁 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ 𝑁 ) = ∅ ) ) |
9 |
|
finxp0 |
⊢ ( ∅ ↑↑ ∅ ) = ∅ |
10 |
|
suceq |
⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) |
11 |
|
df-1o |
⊢ 1o = suc ∅ |
12 |
10 11
|
eqtr4di |
⊢ ( 𝑚 = ∅ → suc 𝑚 = 1o ) |
13 |
|
finxpeq2 |
⊢ ( suc 𝑚 = 1o → ( ∅ ↑↑ suc 𝑚 ) = ( ∅ ↑↑ 1o ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑚 = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ( ∅ ↑↑ 1o ) ) |
15 |
|
finxp1o |
⊢ ( ∅ ↑↑ 1o ) = ∅ |
16 |
14 15
|
eqtrdi |
⊢ ( 𝑚 = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) |
17 |
16
|
adantl |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑚 = ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) |
18 |
|
finxpsuc |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ( ( ∅ ↑↑ 𝑚 ) × ∅ ) ) |
19 |
|
xp0 |
⊢ ( ( ∅ ↑↑ 𝑚 ) × ∅ ) = ∅ |
20 |
18 19
|
eqtrdi |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) |
21 |
17 20
|
pm2.61dane |
⊢ ( 𝑚 ∈ ω → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) |
22 |
21
|
a1d |
⊢ ( 𝑚 ∈ ω → ( ( ∅ ↑↑ 𝑚 ) = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) ) |
23 |
2 4 6 8 9 22
|
finds |
⊢ ( 𝑁 ∈ ω → ( ∅ ↑↑ 𝑁 ) = ∅ ) |
24 |
|
finxpnom |
⊢ ( ¬ 𝑁 ∈ ω → ( ∅ ↑↑ 𝑁 ) = ∅ ) |
25 |
23 24
|
pm2.61i |
⊢ ( ∅ ↑↑ 𝑁 ) = ∅ |