| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finxpeq2 |
⊢ ( 𝑛 = ∅ → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ ∅ ) ) |
| 2 |
1
|
eqeq1d |
⊢ ( 𝑛 = ∅ → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ ∅ ) = ∅ ) ) |
| 3 |
|
finxpeq2 |
⊢ ( 𝑛 = 𝑚 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ 𝑚 ) ) |
| 4 |
3
|
eqeq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ 𝑚 ) = ∅ ) ) |
| 5 |
|
finxpeq2 |
⊢ ( 𝑛 = suc 𝑚 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ suc 𝑚 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑛 = suc 𝑚 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ suc 𝑚 ) = ∅ ) ) |
| 7 |
|
finxpeq2 |
⊢ ( 𝑛 = 𝑁 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ 𝑁 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ 𝑁 ) = ∅ ) ) |
| 9 |
|
finxp0 |
⊢ ( ∅ ↑↑ ∅ ) = ∅ |
| 10 |
|
suceq |
⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) |
| 11 |
|
df-1o |
⊢ 1o = suc ∅ |
| 12 |
10 11
|
eqtr4di |
⊢ ( 𝑚 = ∅ → suc 𝑚 = 1o ) |
| 13 |
|
finxpeq2 |
⊢ ( suc 𝑚 = 1o → ( ∅ ↑↑ suc 𝑚 ) = ( ∅ ↑↑ 1o ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑚 = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ( ∅ ↑↑ 1o ) ) |
| 15 |
|
finxp1o |
⊢ ( ∅ ↑↑ 1o ) = ∅ |
| 16 |
14 15
|
eqtrdi |
⊢ ( 𝑚 = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑚 = ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) |
| 18 |
|
finxpsuc |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ( ( ∅ ↑↑ 𝑚 ) × ∅ ) ) |
| 19 |
|
xp0 |
⊢ ( ( ∅ ↑↑ 𝑚 ) × ∅ ) = ∅ |
| 20 |
18 19
|
eqtrdi |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) |
| 21 |
17 20
|
pm2.61dane |
⊢ ( 𝑚 ∈ ω → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) |
| 22 |
21
|
a1d |
⊢ ( 𝑚 ∈ ω → ( ( ∅ ↑↑ 𝑚 ) = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) ) |
| 23 |
2 4 6 8 9 22
|
finds |
⊢ ( 𝑁 ∈ ω → ( ∅ ↑↑ 𝑁 ) = ∅ ) |
| 24 |
|
finxpnom |
⊢ ( ¬ 𝑁 ∈ ω → ( ∅ ↑↑ 𝑁 ) = ∅ ) |
| 25 |
23 24
|
pm2.61i |
⊢ ( ∅ ↑↑ 𝑁 ) = ∅ |