| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpeq2 | ⊢ ( 𝑛  =  ∅  →  ( ∅ ↑↑ 𝑛 )  =  ( ∅ ↑↑ ∅ ) ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( 𝑛  =  ∅  →  ( ( ∅ ↑↑ 𝑛 )  =  ∅  ↔  ( ∅ ↑↑ ∅ )  =  ∅ ) ) | 
						
							| 3 |  | finxpeq2 | ⊢ ( 𝑛  =  𝑚  →  ( ∅ ↑↑ 𝑛 )  =  ( ∅ ↑↑ 𝑚 ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ∅ ↑↑ 𝑛 )  =  ∅  ↔  ( ∅ ↑↑ 𝑚 )  =  ∅ ) ) | 
						
							| 5 |  | finxpeq2 | ⊢ ( 𝑛  =  suc  𝑚  →  ( ∅ ↑↑ 𝑛 )  =  ( ∅ ↑↑ suc  𝑚 ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑛  =  suc  𝑚  →  ( ( ∅ ↑↑ 𝑛 )  =  ∅  ↔  ( ∅ ↑↑ suc  𝑚 )  =  ∅ ) ) | 
						
							| 7 |  | finxpeq2 | ⊢ ( 𝑛  =  𝑁  →  ( ∅ ↑↑ 𝑛 )  =  ( ∅ ↑↑ 𝑁 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( ∅ ↑↑ 𝑛 )  =  ∅  ↔  ( ∅ ↑↑ 𝑁 )  =  ∅ ) ) | 
						
							| 9 |  | finxp0 | ⊢ ( ∅ ↑↑ ∅ )  =  ∅ | 
						
							| 10 |  | suceq | ⊢ ( 𝑚  =  ∅  →  suc  𝑚  =  suc  ∅ ) | 
						
							| 11 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 12 | 10 11 | eqtr4di | ⊢ ( 𝑚  =  ∅  →  suc  𝑚  =  1o ) | 
						
							| 13 |  | finxpeq2 | ⊢ ( suc  𝑚  =  1o  →  ( ∅ ↑↑ suc  𝑚 )  =  ( ∅ ↑↑ 1o ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝑚  =  ∅  →  ( ∅ ↑↑ suc  𝑚 )  =  ( ∅ ↑↑ 1o ) ) | 
						
							| 15 |  | finxp1o | ⊢ ( ∅ ↑↑ 1o )  =  ∅ | 
						
							| 16 | 14 15 | eqtrdi | ⊢ ( 𝑚  =  ∅  →  ( ∅ ↑↑ suc  𝑚 )  =  ∅ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑚  =  ∅ )  →  ( ∅ ↑↑ suc  𝑚 )  =  ∅ ) | 
						
							| 18 |  | finxpsuc | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑚  ≠  ∅ )  →  ( ∅ ↑↑ suc  𝑚 )  =  ( ( ∅ ↑↑ 𝑚 )  ×  ∅ ) ) | 
						
							| 19 |  | xp0 | ⊢ ( ( ∅ ↑↑ 𝑚 )  ×  ∅ )  =  ∅ | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑚  ≠  ∅ )  →  ( ∅ ↑↑ suc  𝑚 )  =  ∅ ) | 
						
							| 21 | 17 20 | pm2.61dane | ⊢ ( 𝑚  ∈  ω  →  ( ∅ ↑↑ suc  𝑚 )  =  ∅ ) | 
						
							| 22 | 21 | a1d | ⊢ ( 𝑚  ∈  ω  →  ( ( ∅ ↑↑ 𝑚 )  =  ∅  →  ( ∅ ↑↑ suc  𝑚 )  =  ∅ ) ) | 
						
							| 23 | 2 4 6 8 9 22 | finds | ⊢ ( 𝑁  ∈  ω  →  ( ∅ ↑↑ 𝑁 )  =  ∅ ) | 
						
							| 24 |  | finxpnom | ⊢ ( ¬  𝑁  ∈  ω  →  ( ∅ ↑↑ 𝑁 )  =  ∅ ) | 
						
							| 25 | 23 24 | pm2.61i | ⊢ ( ∅ ↑↑ 𝑁 )  =  ∅ |