Metamath Proof Explorer


Theorem finxp00

Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxp00 ( ∅ ↑↑ 𝑁 ) = ∅

Proof

Step Hyp Ref Expression
1 finxpeq2 ( 𝑛 = ∅ → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ ∅ ) )
2 1 eqeq1d ( 𝑛 = ∅ → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ ∅ ) = ∅ ) )
3 finxpeq2 ( 𝑛 = 𝑚 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ 𝑚 ) )
4 3 eqeq1d ( 𝑛 = 𝑚 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ 𝑚 ) = ∅ ) )
5 finxpeq2 ( 𝑛 = suc 𝑚 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ suc 𝑚 ) )
6 5 eqeq1d ( 𝑛 = suc 𝑚 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ suc 𝑚 ) = ∅ ) )
7 finxpeq2 ( 𝑛 = 𝑁 → ( ∅ ↑↑ 𝑛 ) = ( ∅ ↑↑ 𝑁 ) )
8 7 eqeq1d ( 𝑛 = 𝑁 → ( ( ∅ ↑↑ 𝑛 ) = ∅ ↔ ( ∅ ↑↑ 𝑁 ) = ∅ ) )
9 finxp0 ( ∅ ↑↑ ∅ ) = ∅
10 suceq ( 𝑚 = ∅ → suc 𝑚 = suc ∅ )
11 df-1o 1o = suc ∅
12 10 11 eqtr4di ( 𝑚 = ∅ → suc 𝑚 = 1o )
13 finxpeq2 ( suc 𝑚 = 1o → ( ∅ ↑↑ suc 𝑚 ) = ( ∅ ↑↑ 1o ) )
14 12 13 syl ( 𝑚 = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ( ∅ ↑↑ 1o ) )
15 finxp1o ( ∅ ↑↑ 1o ) = ∅
16 14 15 eqtrdi ( 𝑚 = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ∅ )
17 16 adantl ( ( 𝑚 ∈ ω ∧ 𝑚 = ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ∅ )
18 finxpsuc ( ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ( ( ∅ ↑↑ 𝑚 ) × ∅ ) )
19 xp0 ( ( ∅ ↑↑ 𝑚 ) × ∅ ) = ∅
20 18 19 eqtrdi ( ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) → ( ∅ ↑↑ suc 𝑚 ) = ∅ )
21 17 20 pm2.61dane ( 𝑚 ∈ ω → ( ∅ ↑↑ suc 𝑚 ) = ∅ )
22 21 a1d ( 𝑚 ∈ ω → ( ( ∅ ↑↑ 𝑚 ) = ∅ → ( ∅ ↑↑ suc 𝑚 ) = ∅ ) )
23 2 4 6 8 9 22 finds ( 𝑁 ∈ ω → ( ∅ ↑↑ 𝑁 ) = ∅ )
24 finxpnom ( ¬ 𝑁 ∈ ω → ( ∅ ↑↑ 𝑁 ) = ∅ )
25 23 24 pm2.61i ( ∅ ↑↑ 𝑁 ) = ∅