| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpeq2 |  |-  ( n = (/) -> ( (/) ^^ n ) = ( (/) ^^ (/) ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( n = (/) -> ( ( (/) ^^ n ) = (/) <-> ( (/) ^^ (/) ) = (/) ) ) | 
						
							| 3 |  | finxpeq2 |  |-  ( n = m -> ( (/) ^^ n ) = ( (/) ^^ m ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( n = m -> ( ( (/) ^^ n ) = (/) <-> ( (/) ^^ m ) = (/) ) ) | 
						
							| 5 |  | finxpeq2 |  |-  ( n = suc m -> ( (/) ^^ n ) = ( (/) ^^ suc m ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( n = suc m -> ( ( (/) ^^ n ) = (/) <-> ( (/) ^^ suc m ) = (/) ) ) | 
						
							| 7 |  | finxpeq2 |  |-  ( n = N -> ( (/) ^^ n ) = ( (/) ^^ N ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( n = N -> ( ( (/) ^^ n ) = (/) <-> ( (/) ^^ N ) = (/) ) ) | 
						
							| 9 |  | finxp0 |  |-  ( (/) ^^ (/) ) = (/) | 
						
							| 10 |  | suceq |  |-  ( m = (/) -> suc m = suc (/) ) | 
						
							| 11 |  | df-1o |  |-  1o = suc (/) | 
						
							| 12 | 10 11 | eqtr4di |  |-  ( m = (/) -> suc m = 1o ) | 
						
							| 13 |  | finxpeq2 |  |-  ( suc m = 1o -> ( (/) ^^ suc m ) = ( (/) ^^ 1o ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( m = (/) -> ( (/) ^^ suc m ) = ( (/) ^^ 1o ) ) | 
						
							| 15 |  | finxp1o |  |-  ( (/) ^^ 1o ) = (/) | 
						
							| 16 | 14 15 | eqtrdi |  |-  ( m = (/) -> ( (/) ^^ suc m ) = (/) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( m e. _om /\ m = (/) ) -> ( (/) ^^ suc m ) = (/) ) | 
						
							| 18 |  | finxpsuc |  |-  ( ( m e. _om /\ m =/= (/) ) -> ( (/) ^^ suc m ) = ( ( (/) ^^ m ) X. (/) ) ) | 
						
							| 19 |  | xp0 |  |-  ( ( (/) ^^ m ) X. (/) ) = (/) | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( ( m e. _om /\ m =/= (/) ) -> ( (/) ^^ suc m ) = (/) ) | 
						
							| 21 | 17 20 | pm2.61dane |  |-  ( m e. _om -> ( (/) ^^ suc m ) = (/) ) | 
						
							| 22 | 21 | a1d |  |-  ( m e. _om -> ( ( (/) ^^ m ) = (/) -> ( (/) ^^ suc m ) = (/) ) ) | 
						
							| 23 | 2 4 6 8 9 22 | finds |  |-  ( N e. _om -> ( (/) ^^ N ) = (/) ) | 
						
							| 24 |  | finxpnom |  |-  ( -. N e. _om -> ( (/) ^^ N ) = (/) ) | 
						
							| 25 | 23 24 | pm2.61i |  |-  ( (/) ^^ N ) = (/) |