Metamath Proof Explorer


Theorem finxpnom

Description: Cartesian exponentiation when the exponent is not a natural number defaults to the empty set. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxpnom ¬ N ω U ↑↑ N =

Proof

Step Hyp Ref Expression
1 simpl N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N N ω
2 1 con3i ¬ N ω ¬ N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
3 abid y y | N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
4 2 3 sylnibr ¬ N ω ¬ y y | N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
5 df-finxp U ↑↑ N = y | N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
6 5 eleq2i y U ↑↑ N y y | N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
7 4 6 sylnibr ¬ N ω ¬ y U ↑↑ N
8 7 eq0rdv ¬ N ω U ↑↑ N =