Metamath Proof Explorer


Theorem finxpnom

Description: Cartesian exponentiation when the exponent is not a natural number defaults to the empty set. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxpnom ¬NωU↑↑N=

Proof

Step Hyp Ref Expression
1 simpl Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyNNω
2 1 con3i ¬Nω¬Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
3 abid yy|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyNNω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
4 2 3 sylnibr ¬Nω¬yy|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
5 df-finxp U↑↑N=y|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
6 5 eleq2i yU↑↑Nyy|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
7 4 6 sylnibr ¬Nω¬yU↑↑N
8 7 eq0rdv ¬NωU↑↑N=