Step |
Hyp |
Ref |
Expression |
1 |
|
finxpreclem5.1 |
|- F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
2 |
|
df-ov |
|- ( n F x ) = ( F ` <. n , x >. ) |
3 |
|
vex |
|- x e. _V |
4 |
|
0ex |
|- (/) e. _V |
5 |
|
opex |
|- <. U. n , ( 1st ` x ) >. e. _V |
6 |
|
opex |
|- <. n , x >. e. _V |
7 |
5 6
|
ifex |
|- if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) e. _V |
8 |
4 7
|
ifex |
|- if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V |
9 |
1
|
ovmpt4g |
|- ( ( n e. _om /\ x e. _V /\ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V ) -> ( n F x ) = if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
10 |
3 8 9
|
mp3an23 |
|- ( n e. _om -> ( n F x ) = if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
11 |
10
|
ad2antrr |
|- ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( n F x ) = if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
12 |
|
1on |
|- 1o e. On |
13 |
12
|
onirri |
|- -. 1o e. 1o |
14 |
|
eleq2 |
|- ( n = 1o -> ( 1o e. n <-> 1o e. 1o ) ) |
15 |
13 14
|
mtbiri |
|- ( n = 1o -> -. 1o e. n ) |
16 |
15
|
con2i |
|- ( 1o e. n -> -. n = 1o ) |
17 |
16
|
intnanrd |
|- ( 1o e. n -> -. ( n = 1o /\ x e. U ) ) |
18 |
17
|
iffalsed |
|- ( 1o e. n -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) |
19 |
18
|
adantl |
|- ( ( n e. _om /\ 1o e. n ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) |
20 |
|
iffalse |
|- ( -. x e. ( _V X. U ) -> if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. ) |
21 |
19 20
|
sylan9eq |
|- ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = <. n , x >. ) |
22 |
11 21
|
eqtrd |
|- ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( n F x ) = <. n , x >. ) |
23 |
2 22
|
eqtr3id |
|- ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( F ` <. n , x >. ) = <. n , x >. ) |
24 |
23
|
ex |
|- ( ( n e. _om /\ 1o e. n ) -> ( -. x e. ( _V X. U ) -> ( F ` <. n , x >. ) = <. n , x >. ) ) |