| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finxpreclem5.1 |  |-  F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 2 |  | df-ov |  |-  ( n F x ) = ( F ` <. n , x >. ) | 
						
							| 3 |  | vex |  |-  x e. _V | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 |  | opex |  |-  <. U. n , ( 1st ` x ) >. e. _V | 
						
							| 6 |  | opex |  |-  <. n , x >. e. _V | 
						
							| 7 | 5 6 | ifex |  |-  if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) e. _V | 
						
							| 8 | 4 7 | ifex |  |-  if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V | 
						
							| 9 | 1 | ovmpt4g |  |-  ( ( n e. _om /\ x e. _V /\ if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) e. _V ) -> ( n F x ) = if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 10 | 3 8 9 | mp3an23 |  |-  ( n e. _om -> ( n F x ) = if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 11 | 10 | ad2antrr |  |-  ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( n F x ) = if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 12 |  | 1on |  |-  1o e. On | 
						
							| 13 | 12 | onirri |  |-  -. 1o e. 1o | 
						
							| 14 |  | eleq2 |  |-  ( n = 1o -> ( 1o e. n <-> 1o e. 1o ) ) | 
						
							| 15 | 13 14 | mtbiri |  |-  ( n = 1o -> -. 1o e. n ) | 
						
							| 16 | 15 | con2i |  |-  ( 1o e. n -> -. n = 1o ) | 
						
							| 17 | 16 | intnanrd |  |-  ( 1o e. n -> -. ( n = 1o /\ x e. U ) ) | 
						
							| 18 | 17 | iffalsed |  |-  ( 1o e. n -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( n e. _om /\ 1o e. n ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) | 
						
							| 20 |  | iffalse |  |-  ( -. x e. ( _V X. U ) -> if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = <. n , x >. ) | 
						
							| 21 | 19 20 | sylan9eq |  |-  ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = <. n , x >. ) | 
						
							| 22 | 11 21 | eqtrd |  |-  ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( n F x ) = <. n , x >. ) | 
						
							| 23 | 2 22 | eqtr3id |  |-  ( ( ( n e. _om /\ 1o e. n ) /\ -. x e. ( _V X. U ) ) -> ( F ` <. n , x >. ) = <. n , x >. ) | 
						
							| 24 | 23 | ex |  |-  ( ( n e. _om /\ 1o e. n ) -> ( -. x e. ( _V X. U ) -> ( F ` <. n , x >. ) = <. n , x >. ) ) |