Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for ML
Cartesian exponentiation
finxpreclem6
Next ⟩
finxpsuclem
Metamath Proof Explorer
Ascii
Unicode
Theorem
finxpreclem6
Description:
Lemma for
^^
recursion theorems.
(Contributed by
ML
, 24-Oct-2020)
Ref
Expression
Hypothesis
finxpreclem5.1
ω
⊢
F
=
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
x
n
x
Assertion
finxpreclem6
ω
⊢
N
∈
ω
∧
1
𝑜
∈
N
→
U
↑↑
N
⊆
V
×
U
Proof
Step
Hyp
Ref
Expression
1
finxpreclem5.1
ω
⊢
F
=
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
x
n
x
2
eleq1
ω
ω
⊢
n
=
N
→
n
∈
ω
↔
N
∈
ω
3
eleq2
⊢
n
=
N
→
1
𝑜
∈
n
↔
1
𝑜
∈
N
4
2
3
anbi12d
ω
ω
⊢
n
=
N
→
n
∈
ω
∧
1
𝑜
∈
n
↔
N
∈
ω
∧
1
𝑜
∈
N
5
anass
ω
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
↔
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
6
nfv
ω
⊢
Ⅎ
x
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
7
nfmpo2
ω
⊢
Ⅎ
_
x
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
x
n
x
8
1
7
nfcxfr
⊢
Ⅎ
_
x
F
9
nfcv
⊢
Ⅎ
_
x
n
y
10
8
9
nfrdg
⊢
Ⅎ
_
x
rec
F
n
y
11
nfcv
⊢
Ⅎ
_
x
n
12
10
11
nffv
⊢
Ⅎ
_
x
rec
F
n
y
n
13
12
nfeq2
⊢
Ⅎ
x
∅
=
rec
F
n
y
n
14
13
nfn
⊢
Ⅎ
x
¬
∅
=
rec
F
n
y
n
15
6
14
nfim
ω
⊢
Ⅎ
x
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
¬
∅
=
rec
F
n
y
n
16
eleq1
⊢
x
=
y
→
x
∈
V
×
U
↔
y
∈
V
×
U
17
16
notbid
⊢
x
=
y
→
¬
x
∈
V
×
U
↔
¬
y
∈
V
×
U
18
17
anbi2d
⊢
x
=
y
→
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
↔
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
19
18
anbi2d
ω
ω
⊢
x
=
y
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
↔
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
20
opeq2
⊢
x
=
y
→
n
x
=
n
y
21
rdgeq2
⊢
n
x
=
n
y
→
rec
F
n
x
=
rec
F
n
y
22
20
21
syl
⊢
x
=
y
→
rec
F
n
x
=
rec
F
n
y
23
22
fveq1d
⊢
x
=
y
→
rec
F
n
x
n
=
rec
F
n
y
n
24
23
eqeq2d
⊢
x
=
y
→
∅
=
rec
F
n
x
n
↔
∅
=
rec
F
n
y
n
25
24
notbid
⊢
x
=
y
→
¬
∅
=
rec
F
n
x
n
↔
¬
∅
=
rec
F
n
y
n
26
19
25
imbi12d
ω
ω
⊢
x
=
y
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
¬
∅
=
rec
F
n
x
n
↔
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
¬
∅
=
rec
F
n
y
n
27
anass
ω
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
↔
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
28
vex
⊢
n
∈
V
29
fveqeq2
⊢
m
=
∅
→
rec
F
n
x
m
=
n
x
↔
rec
F
n
x
∅
=
n
x
30
fveqeq2
⊢
m
=
o
→
rec
F
n
x
m
=
n
x
↔
rec
F
n
x
o
=
n
x
31
fveqeq2
⊢
m
=
suc
o
→
rec
F
n
x
m
=
n
x
↔
rec
F
n
x
suc
o
=
n
x
32
opex
⊢
n
x
∈
V
33
32
rdg0
⊢
rec
F
n
x
∅
=
n
x
34
33
a1i
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
∅
=
n
x
35
nnon
ω
⊢
o
∈
ω
→
o
∈
On
36
rdgsuc
⊢
o
∈
On
→
rec
F
n
x
suc
o
=
F
rec
F
n
x
o
37
35
36
syl
ω
⊢
o
∈
ω
→
rec
F
n
x
suc
o
=
F
rec
F
n
x
o
38
fveq2
⊢
rec
F
n
x
o
=
n
x
→
F
rec
F
n
x
o
=
F
n
x
39
37
38
sylan9eq
ω
⊢
o
∈
ω
∧
rec
F
n
x
o
=
n
x
→
rec
F
n
x
suc
o
=
F
n
x
40
1
finxpreclem5
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
→
¬
x
∈
V
×
U
→
F
n
x
=
n
x
41
40
imp
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
F
n
x
=
n
x
42
39
41
sylan9eq
ω
ω
⊢
o
∈
ω
∧
rec
F
n
x
o
=
n
x
∧
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
suc
o
=
n
x
43
42
expl
ω
ω
⊢
o
∈
ω
→
rec
F
n
x
o
=
n
x
∧
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
suc
o
=
n
x
44
43
expcomd
ω
ω
⊢
o
∈
ω
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
o
=
n
x
→
rec
F
n
x
suc
o
=
n
x
45
29
30
31
34
44
finds2
ω
ω
⊢
m
∈
ω
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
m
=
n
x
46
eleq1
ω
ω
⊢
n
=
m
→
n
∈
ω
↔
m
∈
ω
47
fveqeq2
⊢
n
=
m
→
rec
F
n
x
n
=
n
x
↔
rec
F
n
x
m
=
n
x
48
47
imbi2d
ω
ω
⊢
n
=
m
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
n
=
n
x
↔
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
m
=
n
x
49
46
48
imbi12d
ω
ω
ω
ω
⊢
n
=
m
→
n
∈
ω
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
n
=
n
x
↔
m
∈
ω
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
m
=
n
x
50
45
49
mpbiri
ω
ω
⊢
n
=
m
→
n
∈
ω
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
n
=
n
x
51
50
equcoms
ω
ω
⊢
m
=
n
→
n
∈
ω
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
n
=
n
x
52
28
51
vtocle
ω
ω
⊢
n
∈
ω
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
n
=
n
x
53
27
52
biimtrrid
ω
ω
⊢
n
∈
ω
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
n
=
n
x
54
53
anabsi5
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
n
=
n
x
55
vex
⊢
x
∈
V
56
28
55
opnzi
⊢
n
x
≠
∅
57
56
a1i
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
n
x
≠
∅
58
54
57
eqnetrd
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
rec
F
n
x
n
≠
∅
59
58
necomd
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
∅
≠
rec
F
n
x
n
60
59
neneqd
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
x
∈
V
×
U
→
¬
∅
=
rec
F
n
x
n
61
15
26
60
chvarfv
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
¬
∅
=
rec
F
n
y
n
62
61
intnand
ω
ω
⊢
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
¬
n
∈
ω
∧
∅
=
rec
F
n
y
n
63
62
adantl
ω
ω
⊢
n
=
N
∧
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
¬
n
∈
ω
∧
∅
=
rec
F
n
y
n
64
opeq1
⊢
n
=
N
→
n
y
=
N
y
65
rdgeq2
⊢
n
y
=
N
y
→
rec
F
n
y
=
rec
F
N
y
66
64
65
syl
⊢
n
=
N
→
rec
F
n
y
=
rec
F
N
y
67
id
⊢
n
=
N
→
n
=
N
68
66
67
fveq12d
⊢
n
=
N
→
rec
F
n
y
n
=
rec
F
N
y
N
69
68
eqeq2d
⊢
n
=
N
→
∅
=
rec
F
n
y
n
↔
∅
=
rec
F
N
y
N
70
2
69
anbi12d
ω
ω
⊢
n
=
N
→
n
∈
ω
∧
∅
=
rec
F
n
y
n
↔
N
∈
ω
∧
∅
=
rec
F
N
y
N
71
70
abbidv
ω
ω
⊢
n
=
N
→
y
|
n
∈
ω
∧
∅
=
rec
F
n
y
n
=
y
|
N
∈
ω
∧
∅
=
rec
F
N
y
N
72
1
dffinxpf
ω
⊢
U
↑↑
N
=
y
|
N
∈
ω
∧
∅
=
rec
F
N
y
N
73
71
72
eqtr4di
ω
⊢
n
=
N
→
y
|
n
∈
ω
∧
∅
=
rec
F
n
y
n
=
U
↑↑
N
74
73
eleq2d
ω
⊢
n
=
N
→
y
∈
y
|
n
∈
ω
∧
∅
=
rec
F
n
y
n
↔
y
∈
U
↑↑
N
75
abid
ω
ω
⊢
y
∈
y
|
n
∈
ω
∧
∅
=
rec
F
n
y
n
↔
n
∈
ω
∧
∅
=
rec
F
n
y
n
76
74
75
bitr3di
ω
⊢
n
=
N
→
y
∈
U
↑↑
N
↔
n
∈
ω
∧
∅
=
rec
F
n
y
n
77
76
adantr
ω
ω
⊢
n
=
N
∧
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
y
∈
U
↑↑
N
↔
n
∈
ω
∧
∅
=
rec
F
n
y
n
78
63
77
mtbird
ω
⊢
n
=
N
∧
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
¬
y
∈
U
↑↑
N
79
78
ex
ω
⊢
n
=
N
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
¬
y
∈
U
↑↑
N
80
5
79
biimtrid
ω
⊢
n
=
N
→
n
∈
ω
∧
1
𝑜
∈
n
∧
¬
y
∈
V
×
U
→
¬
y
∈
U
↑↑
N
81
80
expdimp
ω
⊢
n
=
N
∧
n
∈
ω
∧
1
𝑜
∈
n
→
¬
y
∈
V
×
U
→
¬
y
∈
U
↑↑
N
82
81
con4d
ω
⊢
n
=
N
∧
n
∈
ω
∧
1
𝑜
∈
n
→
y
∈
U
↑↑
N
→
y
∈
V
×
U
83
82
ssrdv
ω
⊢
n
=
N
∧
n
∈
ω
∧
1
𝑜
∈
n
→
U
↑↑
N
⊆
V
×
U
84
83
ex
ω
⊢
n
=
N
→
n
∈
ω
∧
1
𝑜
∈
n
→
U
↑↑
N
⊆
V
×
U
85
4
84
sylbird
ω
⊢
n
=
N
→
N
∈
ω
∧
1
𝑜
∈
N
→
U
↑↑
N
⊆
V
×
U
86
85
vtocleg
ω
ω
⊢
N
∈
ω
→
N
∈
ω
∧
1
𝑜
∈
N
→
U
↑↑
N
⊆
V
×
U
87
86
anabsi5
ω
⊢
N
∈
ω
∧
1
𝑜
∈
N
→
U
↑↑
N
⊆
V
×
U