Metamath Proof Explorer


Theorem finxpreclem6

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 24-Oct-2020)

Ref Expression
Hypothesis finxpreclem5.1 F=nω,xVifn=1𝑜xUifxV×Un1stxnx
Assertion finxpreclem6 Nω1𝑜NU↑↑NV×U

Proof

Step Hyp Ref Expression
1 finxpreclem5.1 F=nω,xVifn=1𝑜xUifxV×Un1stxnx
2 eleq1 n=NnωNω
3 eleq2 n=N1𝑜n1𝑜N
4 2 3 anbi12d n=Nnω1𝑜nNω1𝑜N
5 anass nω1𝑜n¬yV×Unω1𝑜n¬yV×U
6 nfv xnω1𝑜n¬yV×U
7 nfmpo2 _xnω,xVifn=1𝑜xUifxV×Un1stxnx
8 1 7 nfcxfr _xF
9 nfcv _xny
10 8 9 nfrdg _xrecFny
11 nfcv _xn
12 10 11 nffv _xrecFnyn
13 12 nfeq2 x=recFnyn
14 13 nfn x¬=recFnyn
15 6 14 nfim xnω1𝑜n¬yV×U¬=recFnyn
16 eleq1 x=yxV×UyV×U
17 16 notbid x=y¬xV×U¬yV×U
18 17 anbi2d x=y1𝑜n¬xV×U1𝑜n¬yV×U
19 18 anbi2d x=ynω1𝑜n¬xV×Unω1𝑜n¬yV×U
20 opeq2 x=ynx=ny
21 rdgeq2 nx=nyrecFnx=recFny
22 20 21 syl x=yrecFnx=recFny
23 22 fveq1d x=yrecFnxn=recFnyn
24 23 eqeq2d x=y=recFnxn=recFnyn
25 24 notbid x=y¬=recFnxn¬=recFnyn
26 19 25 imbi12d x=ynω1𝑜n¬xV×U¬=recFnxnnω1𝑜n¬yV×U¬=recFnyn
27 anass nω1𝑜n¬xV×Unω1𝑜n¬xV×U
28 vex nV
29 fveqeq2 m=recFnxm=nxrecFnx=nx
30 fveqeq2 m=orecFnxm=nxrecFnxo=nx
31 fveqeq2 m=sucorecFnxm=nxrecFnxsuco=nx
32 opex nxV
33 32 rdg0 recFnx=nx
34 33 a1i nω1𝑜n¬xV×UrecFnx=nx
35 nnon oωoOn
36 rdgsuc oOnrecFnxsuco=FrecFnxo
37 35 36 syl oωrecFnxsuco=FrecFnxo
38 fveq2 recFnxo=nxFrecFnxo=Fnx
39 37 38 sylan9eq oωrecFnxo=nxrecFnxsuco=Fnx
40 1 finxpreclem5 nω1𝑜n¬xV×UFnx=nx
41 40 imp nω1𝑜n¬xV×UFnx=nx
42 39 41 sylan9eq oωrecFnxo=nxnω1𝑜n¬xV×UrecFnxsuco=nx
43 42 expl oωrecFnxo=nxnω1𝑜n¬xV×UrecFnxsuco=nx
44 43 expcomd oωnω1𝑜n¬xV×UrecFnxo=nxrecFnxsuco=nx
45 29 30 31 34 44 finds2 mωnω1𝑜n¬xV×UrecFnxm=nx
46 eleq1 n=mnωmω
47 fveqeq2 n=mrecFnxn=nxrecFnxm=nx
48 47 imbi2d n=mnω1𝑜n¬xV×UrecFnxn=nxnω1𝑜n¬xV×UrecFnxm=nx
49 46 48 imbi12d n=mnωnω1𝑜n¬xV×UrecFnxn=nxmωnω1𝑜n¬xV×UrecFnxm=nx
50 45 49 mpbiri n=mnωnω1𝑜n¬xV×UrecFnxn=nx
51 50 equcoms m=nnωnω1𝑜n¬xV×UrecFnxn=nx
52 28 51 vtocle nωnω1𝑜n¬xV×UrecFnxn=nx
53 27 52 biimtrrid nωnω1𝑜n¬xV×UrecFnxn=nx
54 53 anabsi5 nω1𝑜n¬xV×UrecFnxn=nx
55 vex xV
56 28 55 opnzi nx
57 56 a1i nω1𝑜n¬xV×Unx
58 54 57 eqnetrd nω1𝑜n¬xV×UrecFnxn
59 58 necomd nω1𝑜n¬xV×UrecFnxn
60 59 neneqd nω1𝑜n¬xV×U¬=recFnxn
61 15 26 60 chvarfv nω1𝑜n¬yV×U¬=recFnyn
62 61 intnand nω1𝑜n¬yV×U¬nω=recFnyn
63 62 adantl n=Nnω1𝑜n¬yV×U¬nω=recFnyn
64 opeq1 n=Nny=Ny
65 rdgeq2 ny=NyrecFny=recFNy
66 64 65 syl n=NrecFny=recFNy
67 id n=Nn=N
68 66 67 fveq12d n=NrecFnyn=recFNyN
69 68 eqeq2d n=N=recFnyn=recFNyN
70 2 69 anbi12d n=Nnω=recFnynNω=recFNyN
71 70 abbidv n=Ny|nω=recFnyn=y|Nω=recFNyN
72 1 dffinxpf U↑↑N=y|Nω=recFNyN
73 71 72 eqtr4di n=Ny|nω=recFnyn=U↑↑N
74 73 eleq2d n=Nyy|nω=recFnynyU↑↑N
75 abid yy|nω=recFnynnω=recFnyn
76 74 75 bitr3di n=NyU↑↑Nnω=recFnyn
77 76 adantr n=Nnω1𝑜n¬yV×UyU↑↑Nnω=recFnyn
78 63 77 mtbird n=Nnω1𝑜n¬yV×U¬yU↑↑N
79 78 ex n=Nnω1𝑜n¬yV×U¬yU↑↑N
80 5 79 biimtrid n=Nnω1𝑜n¬yV×U¬yU↑↑N
81 80 expdimp n=Nnω1𝑜n¬yV×U¬yU↑↑N
82 81 con4d n=Nnω1𝑜nyU↑↑NyV×U
83 82 ssrdv n=Nnω1𝑜nU↑↑NV×U
84 83 ex n=Nnω1𝑜nU↑↑NV×U
85 4 84 sylbird n=NNω1𝑜NU↑↑NV×U
86 85 vtocleg NωNω1𝑜NU↑↑NV×U
87 86 anabsi5 Nω1𝑜NU↑↑NV×U