Metamath Proof Explorer


Theorem finxpreclem6

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 24-Oct-2020)

Ref Expression
Hypothesis finxpreclem5.1 F = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
Assertion finxpreclem6 N ω 1 𝑜 N U ↑↑ N V × U

Proof

Step Hyp Ref Expression
1 finxpreclem5.1 F = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
2 eleq1 n = N n ω N ω
3 eleq2 n = N 1 𝑜 n 1 𝑜 N
4 2 3 anbi12d n = N n ω 1 𝑜 n N ω 1 𝑜 N
5 anass n ω 1 𝑜 n ¬ y V × U n ω 1 𝑜 n ¬ y V × U
6 nfv x n ω 1 𝑜 n ¬ y V × U
7 nfmpo2 _ x n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
8 1 7 nfcxfr _ x F
9 nfcv _ x n y
10 8 9 nfrdg _ x rec F n y
11 nfcv _ x n
12 10 11 nffv _ x rec F n y n
13 12 nfeq2 x = rec F n y n
14 13 nfn x ¬ = rec F n y n
15 6 14 nfim x n ω 1 𝑜 n ¬ y V × U ¬ = rec F n y n
16 eleq1 x = y x V × U y V × U
17 16 notbid x = y ¬ x V × U ¬ y V × U
18 17 anbi2d x = y 1 𝑜 n ¬ x V × U 1 𝑜 n ¬ y V × U
19 18 anbi2d x = y n ω 1 𝑜 n ¬ x V × U n ω 1 𝑜 n ¬ y V × U
20 opeq2 x = y n x = n y
21 rdgeq2 n x = n y rec F n x = rec F n y
22 20 21 syl x = y rec F n x = rec F n y
23 22 fveq1d x = y rec F n x n = rec F n y n
24 23 eqeq2d x = y = rec F n x n = rec F n y n
25 24 notbid x = y ¬ = rec F n x n ¬ = rec F n y n
26 19 25 imbi12d x = y n ω 1 𝑜 n ¬ x V × U ¬ = rec F n x n n ω 1 𝑜 n ¬ y V × U ¬ = rec F n y n
27 anass n ω 1 𝑜 n ¬ x V × U n ω 1 𝑜 n ¬ x V × U
28 vex n V
29 fveqeq2 m = rec F n x m = n x rec F n x = n x
30 fveqeq2 m = o rec F n x m = n x rec F n x o = n x
31 fveqeq2 m = suc o rec F n x m = n x rec F n x suc o = n x
32 opex n x V
33 32 rdg0 rec F n x = n x
34 33 a1i n ω 1 𝑜 n ¬ x V × U rec F n x = n x
35 nnon o ω o On
36 rdgsuc o On rec F n x suc o = F rec F n x o
37 35 36 syl o ω rec F n x suc o = F rec F n x o
38 fveq2 rec F n x o = n x F rec F n x o = F n x
39 37 38 sylan9eq o ω rec F n x o = n x rec F n x suc o = F n x
40 1 finxpreclem5 n ω 1 𝑜 n ¬ x V × U F n x = n x
41 40 imp n ω 1 𝑜 n ¬ x V × U F n x = n x
42 39 41 sylan9eq o ω rec F n x o = n x n ω 1 𝑜 n ¬ x V × U rec F n x suc o = n x
43 42 expl o ω rec F n x o = n x n ω 1 𝑜 n ¬ x V × U rec F n x suc o = n x
44 43 expcomd o ω n ω 1 𝑜 n ¬ x V × U rec F n x o = n x rec F n x suc o = n x
45 29 30 31 34 44 finds2 m ω n ω 1 𝑜 n ¬ x V × U rec F n x m = n x
46 eleq1 n = m n ω m ω
47 fveqeq2 n = m rec F n x n = n x rec F n x m = n x
48 47 imbi2d n = m n ω 1 𝑜 n ¬ x V × U rec F n x n = n x n ω 1 𝑜 n ¬ x V × U rec F n x m = n x
49 46 48 imbi12d n = m n ω n ω 1 𝑜 n ¬ x V × U rec F n x n = n x m ω n ω 1 𝑜 n ¬ x V × U rec F n x m = n x
50 45 49 mpbiri n = m n ω n ω 1 𝑜 n ¬ x V × U rec F n x n = n x
51 50 equcoms m = n n ω n ω 1 𝑜 n ¬ x V × U rec F n x n = n x
52 28 51 vtocle n ω n ω 1 𝑜 n ¬ x V × U rec F n x n = n x
53 27 52 syl5bir n ω n ω 1 𝑜 n ¬ x V × U rec F n x n = n x
54 53 anabsi5 n ω 1 𝑜 n ¬ x V × U rec F n x n = n x
55 vex x V
56 28 55 opnzi n x
57 56 a1i n ω 1 𝑜 n ¬ x V × U n x
58 54 57 eqnetrd n ω 1 𝑜 n ¬ x V × U rec F n x n
59 58 necomd n ω 1 𝑜 n ¬ x V × U rec F n x n
60 59 neneqd n ω 1 𝑜 n ¬ x V × U ¬ = rec F n x n
61 15 26 60 chvarfv n ω 1 𝑜 n ¬ y V × U ¬ = rec F n y n
62 61 intnand n ω 1 𝑜 n ¬ y V × U ¬ n ω = rec F n y n
63 62 adantl n = N n ω 1 𝑜 n ¬ y V × U ¬ n ω = rec F n y n
64 opeq1 n = N n y = N y
65 rdgeq2 n y = N y rec F n y = rec F N y
66 64 65 syl n = N rec F n y = rec F N y
67 id n = N n = N
68 66 67 fveq12d n = N rec F n y n = rec F N y N
69 68 eqeq2d n = N = rec F n y n = rec F N y N
70 2 69 anbi12d n = N n ω = rec F n y n N ω = rec F N y N
71 70 abbidv n = N y | n ω = rec F n y n = y | N ω = rec F N y N
72 1 dffinxpf U ↑↑ N = y | N ω = rec F N y N
73 71 72 eqtr4di n = N y | n ω = rec F n y n = U ↑↑ N
74 73 eleq2d n = N y y | n ω = rec F n y n y U ↑↑ N
75 abid y y | n ω = rec F n y n n ω = rec F n y n
76 74 75 bitr3di n = N y U ↑↑ N n ω = rec F n y n
77 76 adantr n = N n ω 1 𝑜 n ¬ y V × U y U ↑↑ N n ω = rec F n y n
78 63 77 mtbird n = N n ω 1 𝑜 n ¬ y V × U ¬ y U ↑↑ N
79 78 ex n = N n ω 1 𝑜 n ¬ y V × U ¬ y U ↑↑ N
80 5 79 syl5bi n = N n ω 1 𝑜 n ¬ y V × U ¬ y U ↑↑ N
81 80 expdimp n = N n ω 1 𝑜 n ¬ y V × U ¬ y U ↑↑ N
82 81 con4d n = N n ω 1 𝑜 n y U ↑↑ N y V × U
83 82 ssrdv n = N n ω 1 𝑜 n U ↑↑ N V × U
84 83 ex n = N n ω 1 𝑜 n U ↑↑ N V × U
85 4 84 sylbird n = N N ω 1 𝑜 N U ↑↑ N V × U
86 85 vtocleg N ω N ω 1 𝑜 N U ↑↑ N V × U
87 86 anabsi5 N ω 1 𝑜 N U ↑↑ N V × U