Metamath Proof Explorer


Theorem nnarcl

Description: Reverse closure law for addition of natural numbers. Exercise 1 of TakeutiZaring p. 62 and its converse. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion nnarcl
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om <-> ( A e. _om /\ B e. _om ) ) )

Proof

Step Hyp Ref Expression
1 oaword1
 |-  ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) )
2 eloni
 |-  ( A e. On -> Ord A )
3 ordom
 |-  Ord _om
4 ordtr2
 |-  ( ( Ord A /\ Ord _om ) -> ( ( A C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> A e. _om ) )
5 2 3 4 sylancl
 |-  ( A e. On -> ( ( A C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> A e. _om ) )
6 5 expd
 |-  ( A e. On -> ( A C_ ( A +o B ) -> ( ( A +o B ) e. _om -> A e. _om ) ) )
7 6 adantr
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ ( A +o B ) -> ( ( A +o B ) e. _om -> A e. _om ) ) )
8 1 7 mpd
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> A e. _om ) )
9 oaword2
 |-  ( ( B e. On /\ A e. On ) -> B C_ ( A +o B ) )
10 9 ancoms
 |-  ( ( A e. On /\ B e. On ) -> B C_ ( A +o B ) )
11 eloni
 |-  ( B e. On -> Ord B )
12 ordtr2
 |-  ( ( Ord B /\ Ord _om ) -> ( ( B C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> B e. _om ) )
13 11 3 12 sylancl
 |-  ( B e. On -> ( ( B C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> B e. _om ) )
14 13 expd
 |-  ( B e. On -> ( B C_ ( A +o B ) -> ( ( A +o B ) e. _om -> B e. _om ) ) )
15 14 adantl
 |-  ( ( A e. On /\ B e. On ) -> ( B C_ ( A +o B ) -> ( ( A +o B ) e. _om -> B e. _om ) ) )
16 10 15 mpd
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> B e. _om ) )
17 8 16 jcad
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> ( A e. _om /\ B e. _om ) ) )
18 nnacl
 |-  ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om )
19 17 18 impbid1
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om <-> ( A e. _om /\ B e. _om ) ) )