Metamath Proof Explorer


Theorem nnarcl

Description: Reverse closure law for addition of natural numbers. Exercise 1 of TakeutiZaring p. 62 and its converse. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion nnarcl AOnBOnA+𝑜BωAωBω

Proof

Step Hyp Ref Expression
1 oaword1 AOnBOnAA+𝑜B
2 eloni AOnOrdA
3 ordom Ordω
4 ordtr2 OrdAOrdωAA+𝑜BA+𝑜BωAω
5 2 3 4 sylancl AOnAA+𝑜BA+𝑜BωAω
6 5 expd AOnAA+𝑜BA+𝑜BωAω
7 6 adantr AOnBOnAA+𝑜BA+𝑜BωAω
8 1 7 mpd AOnBOnA+𝑜BωAω
9 oaword2 BOnAOnBA+𝑜B
10 9 ancoms AOnBOnBA+𝑜B
11 eloni BOnOrdB
12 ordtr2 OrdBOrdωBA+𝑜BA+𝑜BωBω
13 11 3 12 sylancl BOnBA+𝑜BA+𝑜BωBω
14 13 expd BOnBA+𝑜BA+𝑜BωBω
15 14 adantl AOnBOnBA+𝑜BA+𝑜BωBω
16 10 15 mpd AOnBOnA+𝑜BωBω
17 8 16 jcad AOnBOnA+𝑜BωAωBω
18 nnacl AωBωA+𝑜Bω
19 17 18 impbid1 AOnBOnA+𝑜BωAωBω