Metamath Proof Explorer


Theorem finxpreclem3

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 20-Oct-2020)

Ref Expression
Hypothesis finxpreclem3.1 F=nω,xVifn=1𝑜xUifxV×Un1stxnx
Assertion finxpreclem3 Nω2𝑜NXV×UN1stX=FNX

Proof

Step Hyp Ref Expression
1 finxpreclem3.1 F=nω,xVifn=1𝑜xUifxV×Un1stxnx
2 1 a1i Nω2𝑜NXV×UF=nω,xVifn=1𝑜xUifxV×Un1stxnx
3 eqeq1 n=Nn=1𝑜N=1𝑜
4 eleq1 x=XxUXU
5 3 4 bi2anan9 n=Nx=Xn=1𝑜xUN=1𝑜XU
6 eleq1 x=XxV×UXV×U
7 6 adantl n=Nx=XxV×UXV×U
8 unieq n=Nn=N
9 8 adantr n=Nx=Xn=N
10 fveq2 x=X1stx=1stX
11 10 adantl n=Nx=X1stx=1stX
12 9 11 opeq12d n=Nx=Xn1stx=N1stX
13 opeq12 n=Nx=Xnx=NX
14 7 12 13 ifbieq12d n=Nx=XifxV×Un1stxnx=ifXV×UN1stXNX
15 5 14 ifbieq2d n=Nx=Xifn=1𝑜xUifxV×Un1stxnx=ifN=1𝑜XUifXV×UN1stXNX
16 sssucid 1𝑜suc1𝑜
17 df-2o 2𝑜=suc1𝑜
18 16 17 sseqtrri 1𝑜2𝑜
19 1on 1𝑜On
20 17 19 sucneqoni 2𝑜1𝑜
21 20 necomi 1𝑜2𝑜
22 df-pss 1𝑜2𝑜1𝑜2𝑜1𝑜2𝑜
23 18 21 22 mpbir2an 1𝑜2𝑜
24 ssnpss 2𝑜1𝑜¬1𝑜2𝑜
25 23 24 mt2 ¬2𝑜1𝑜
26 sseq2 N=1𝑜2𝑜N2𝑜1𝑜
27 25 26 mtbiri N=1𝑜¬2𝑜N
28 27 con2i 2𝑜N¬N=1𝑜
29 28 intnanrd 2𝑜N¬N=1𝑜XU
30 29 iffalsed 2𝑜NifN=1𝑜XUifXV×UN1stXNX=ifXV×UN1stXNX
31 iftrue XV×UifXV×UN1stXNX=N1stX
32 30 31 sylan9eq 2𝑜NXV×UifN=1𝑜XUifXV×UN1stXNX=N1stX
33 15 32 sylan9eqr 2𝑜NXV×Un=Nx=Xifn=1𝑜xUifxV×Un1stxnx=N1stX
34 33 adantlll Nω2𝑜NXV×Un=Nx=Xifn=1𝑜xUifxV×Un1stxnx=N1stX
35 simpll Nω2𝑜NXV×UNω
36 elex XV×UXV
37 36 adantl Nω2𝑜NXV×UXV
38 opex N1stXV
39 38 a1i Nω2𝑜NXV×UN1stXV
40 2 34 35 37 39 ovmpod Nω2𝑜NXV×UNFX=N1stX
41 df-ov NFX=FNX
42 40 41 eqtr3di Nω2𝑜NXV×UN1stX=FNX