Description: Lemma for ^^ recursion theorems. (Contributed by ML, 20-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | finxpreclem3.1 | |
|
Assertion | finxpreclem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finxpreclem3.1 | |
|
2 | 1 | a1i | |
3 | eqeq1 | |
|
4 | eleq1 | |
|
5 | 3 4 | bi2anan9 | |
6 | eleq1 | |
|
7 | 6 | adantl | |
8 | unieq | |
|
9 | 8 | adantr | |
10 | fveq2 | |
|
11 | 10 | adantl | |
12 | 9 11 | opeq12d | |
13 | opeq12 | |
|
14 | 7 12 13 | ifbieq12d | |
15 | 5 14 | ifbieq2d | |
16 | sssucid | |
|
17 | df-2o | |
|
18 | 16 17 | sseqtrri | |
19 | 1on | |
|
20 | 17 19 | sucneqoni | |
21 | 20 | necomi | |
22 | df-pss | |
|
23 | 18 21 22 | mpbir2an | |
24 | ssnpss | |
|
25 | 23 24 | mt2 | |
26 | sseq2 | |
|
27 | 25 26 | mtbiri | |
28 | 27 | con2i | |
29 | 28 | intnanrd | |
30 | 29 | iffalsed | |
31 | iftrue | |
|
32 | 30 31 | sylan9eq | |
33 | 15 32 | sylan9eqr | |
34 | 33 | adantlll | |
35 | simpll | |
|
36 | elex | |
|
37 | 36 | adantl | |
38 | opex | |
|
39 | 38 | a1i | |
40 | 2 34 35 37 39 | ovmpod | |
41 | df-ov | |
|
42 | 40 41 | eqtr3di | |