Metamath Proof Explorer


Theorem finxpreclem3

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 20-Oct-2020)

Ref Expression
Hypothesis finxpreclem3.1 F = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
Assertion finxpreclem3 N ω 2 𝑜 N X V × U N 1 st X = F N X

Proof

Step Hyp Ref Expression
1 finxpreclem3.1 F = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
2 1 a1i N ω 2 𝑜 N X V × U F = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
3 eqeq1 n = N n = 1 𝑜 N = 1 𝑜
4 eleq1 x = X x U X U
5 3 4 bi2anan9 n = N x = X n = 1 𝑜 x U N = 1 𝑜 X U
6 eleq1 x = X x V × U X V × U
7 6 adantl n = N x = X x V × U X V × U
8 unieq n = N n = N
9 8 adantr n = N x = X n = N
10 fveq2 x = X 1 st x = 1 st X
11 10 adantl n = N x = X 1 st x = 1 st X
12 9 11 opeq12d n = N x = X n 1 st x = N 1 st X
13 opeq12 n = N x = X n x = N X
14 7 12 13 ifbieq12d n = N x = X if x V × U n 1 st x n x = if X V × U N 1 st X N X
15 5 14 ifbieq2d n = N x = X if n = 1 𝑜 x U if x V × U n 1 st x n x = if N = 1 𝑜 X U if X V × U N 1 st X N X
16 sssucid 1 𝑜 suc 1 𝑜
17 df-2o 2 𝑜 = suc 1 𝑜
18 16 17 sseqtrri 1 𝑜 2 𝑜
19 1on 1 𝑜 On
20 17 19 sucneqoni 2 𝑜 1 𝑜
21 20 necomi 1 𝑜 2 𝑜
22 df-pss 1 𝑜 2 𝑜 1 𝑜 2 𝑜 1 𝑜 2 𝑜
23 18 21 22 mpbir2an 1 𝑜 2 𝑜
24 ssnpss 2 𝑜 1 𝑜 ¬ 1 𝑜 2 𝑜
25 23 24 mt2 ¬ 2 𝑜 1 𝑜
26 sseq2 N = 1 𝑜 2 𝑜 N 2 𝑜 1 𝑜
27 25 26 mtbiri N = 1 𝑜 ¬ 2 𝑜 N
28 27 con2i 2 𝑜 N ¬ N = 1 𝑜
29 28 intnanrd 2 𝑜 N ¬ N = 1 𝑜 X U
30 29 iffalsed 2 𝑜 N if N = 1 𝑜 X U if X V × U N 1 st X N X = if X V × U N 1 st X N X
31 iftrue X V × U if X V × U N 1 st X N X = N 1 st X
32 30 31 sylan9eq 2 𝑜 N X V × U if N = 1 𝑜 X U if X V × U N 1 st X N X = N 1 st X
33 15 32 sylan9eqr 2 𝑜 N X V × U n = N x = X if n = 1 𝑜 x U if x V × U n 1 st x n x = N 1 st X
34 33 adantlll N ω 2 𝑜 N X V × U n = N x = X if n = 1 𝑜 x U if x V × U n 1 st x n x = N 1 st X
35 simpll N ω 2 𝑜 N X V × U N ω
36 elex X V × U X V
37 36 adantl N ω 2 𝑜 N X V × U X V
38 opex N 1 st X V
39 38 a1i N ω 2 𝑜 N X V × U N 1 st X V
40 2 34 35 37 39 ovmpod N ω 2 𝑜 N X V × U N F X = N 1 st X
41 df-ov N F X = F N X
42 40 41 eqtr3di N ω 2 𝑜 N X V × U N 1 st X = F N X