Metamath Proof Explorer
Description: Inequality of an ordinal set with its successor. Does not use the axiom
of regularity. (Contributed by ML, 18-Oct-2020)
|
|
Ref |
Expression |
|
Hypotheses |
sucneqoni.1 |
|
|
|
sucneqoni.2 |
|
|
Assertion |
sucneqoni |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sucneqoni.1 |
|
| 2 |
|
sucneqoni.2 |
|
| 3 |
1
|
a1i |
|
| 4 |
2
|
a1i |
|
| 5 |
3 4
|
sucneqond |
|
| 6 |
5
|
mptru |
|